@phdthesis{Doll2024, author = {Doll, Julia}, title = {Identifizierung und Charakterisierung neuer, mit H{\"o}rst{\"o}rungen assoziierter Gene und Varianten mittels Exom-Sequenzierung}, doi = {10.25972/OPUS-26109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261097}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Laut des aktuellen Reports der Weltgesundheitsorganisation sind ca. 466 Millionen Menschen weltweit von einer H{\"o}rst{\"o}rung (HS) betroffen. Durch die enorme Heterogenit{\"a}t und die klinische Variabilit{\"a}t, die diese Erkrankung ausmacht, und viele bisher nicht mit HS assoziierte Gene, bleibt ein großer Teil der erblich bedingten HS in vielen Familien unaufgekl{\"a}rt. Die Entwicklung moderner Techniken, wie die Next-Generation Sequenzierung (NGS) und der Fortschritt bei der Untersuchung von Modellorganismen trugen jedoch in den letzten Jahren immens dazu bei, neue Gene zu identifizieren, die innerhalb des auditorischen Signalwegs oder damit assoziierten Strukturen beteiligt sind. Die vorliegende Arbeit umfasst Ergebnisse dreier Ver{\"o}ffentlichungen, in denen iranische und pakistanische Familien und eine deutsche Familie mit erblich bedingter HS untersucht und neue, krankheitsverursachende Varianten identifiziert und funktionell charakterisiert wurden. Im ersten Abschnitt konnten zwei neue rezessive Varianten im CDC14A-Gen als krankheitsverursachend identifiziert werden, die zu einem potentiellen Funktionsverlust des kodierten Proteins in einer iranischen und einer pakistanischen Familie f{\"u}hren. Mit Hilfe einer funktionellen Charakterisierung auf RNA-Ebene (Spleiß-Assay und RT-qPCR) konnte der Funktionsverlust beider Varianten best{\"a}tigt werden. Der zweite Abschnitt umfasst eine deutsche Familie mit sieben von einer HS betroffenen Familienmitgliedern, in der eine heterozygote missense Variante in MYO3A identifiziert wurde. In der vorliegenden Arbeit konnte somit die erste autosomal dominante Variante in einer europ{\"a}ischen Familie mit einer bilingualen, sensorineuralen Hochtonschwerh{\"o}rigkeit beschrieben werden und der dominante Charakter von MYO3A best{\"a}tigt werden. Im dritten Abschnitt konnten die krankheitsverursachenden Varianten in 13 Familien aus einer Kohorte mit 21 pakistanischen Familien mit einer syndromalen und nicht-syndromalen HS ausfindig gemacht werden. Hierbei wurden sowohl bekannte, als auch bisher nicht beschriebene Varianten detektiert. Die Aufkl{\"a}rungsrate innerhalb dieser Kohorte betrug 61,9\% und es konnte somit das Spektrum syndromaler und nicht-syndromaler HS erweitert werden. Der letzte Abschnitt dieser Arbeit beschreibt eine iranische Familie mit einer milden HS und milden Intelligenzminderung, in der eine homozygote missense Variante im Kandidatengen DBN1 ausfindig gemacht wurde. Um die Funktion und die Auswirkungen eines potentiellen Verlusts des codierten Proteins Drebrin zu untersuchen, wurden immunhistochemische F{\"a}rbungen und auditorische Messungen an Dbn1 Knockout (KO)-M{\"a}usen durchgef{\"u}hrt. Hierbei konnte eine Expression innerhalb der Nervenfasern, die innere Haarzellen innervieren, nachgewiesen werden. Eine leicht verl{\"a}ngerte Latenz f{\"u}r die ABR-Welle IV in KO-M{\"a}usen im Vergleich zum Wildtyp ergab den Hinweis auf einen Defekt innerhalb des zentralen auditorischen Signalwegs, der m{\"o}glicherweise mit einer Sprachverarbeitungsst{\"o}rung im Menschen korreliert.}, subject = {H{\"o}rst{\"o}rung}, language = {de} } @phdthesis{Prell2024, author = {Prell, Andreas}, title = {The effects of paternal age on DNA methylation of developmentally important genes in human and bovine sperm}, doi = {10.25972/OPUS-34786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Western societies are steadily becoming older undergoing a clear trend of delayed parenthood. Children of older fathers have an undeniably higher risk for certain neurodevelopmental disorders and other medical conditions. Changes in the epigenetic landscape and especially in DNA methylation patterns are likely to account for a portion of this inherited disease susceptibility. DNA methylation changes during the ageing process are a well-known epigenetic feature. These so-called age-DMRs exist in developmentally important genes in the methylome of several mammalian species. However, there is only a minor overlap between the age-DMR datasets of different studies. We therefore replicated age-DMRs (which were obtained from a genome wide technique) by applying a different technical approach in a larger sample number. Here, this study confirmed 10 age-DMRs in the human and 4 in the bovine sperm epigenome from a preliminary candidate list based on RRBS. For this purpose, we used bisulphite Pyrosequencing in 94 human and 36 bovine sperm samples. These Pyrosequencing results confirm RRBS as an effective and reliable method to screen for age-DMRs in the vertebrate genome. To decipher whether paternal age effects are an evolutionary conserved feature of mammalian development, we compared methylation patterns between human and bovine sperm in orthologous regulatory regions. We discovered that the level of methylation and the age effect are both species-specific and speculate that these methylation marks reflect the lineage-specific development of each species to hit evolutionary requirements and adaptation processes. Different methylation levels between species in developmentally important genes also imply a differing mutational burden, representing a potential driver for point mutations and consequently deviations in the underlying DNA sequence of different species. Using the example of different haplotypes, this study showed the great effect of single base variations on the methylation of adjacent CpGs. Nonetheless, this study could not provide further evidence or a mechanism for the transfer of epigenetic marks to future generations. Therefore, further research in tissues from the progeny of old and young fathers is required to determine if the observed methylation changes are transmitted to the next generation and if they are associated with altered transcriptional activity of the respective genes. This could provide a direct link between the methylome of sperm from elderly fathers and the development potential of the next generation.}, subject = {Epigenetik}, language = {en} } @phdthesis{Riemens2023, author = {Riemens, Renzo J. M.}, title = {Neuroepigenomics in Alzheimer's disease: The single cell ADds}, isbn = {978-94-6423-524-1}, doi = {10.25972/OPUS-25457}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254574}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Forschung, die in dieser Arbeit zusammengestellt wird, kann in zwei Teile geteilt werden. Der erste Teil, bestehend aus vier Kapiteln, konzentriert sich auf die Rolle der epigenetischen Dysregulation in der {\"A}tiopathophysiologie der sporadischen Alzheimer-Krankheit (sAD). Neben Einblicken in die neuesten Entwicklungen in neuroepigenomischen Studien zu dieser Krankheit geht der erste Teil der Arbeit auch auf verbleibende Herausforderungen ein und gibt einen Ausblick auf m{\"o}gliche Entwicklungen auf diesem Gebiet. Der zweite Teil, der drei weitere Kapitel umfasst, konzentriert sich auf die Anwendung von auf induzierten pluripotenten Stammzellen (iPSC) basierenden Krankheitsmodellen f{\"u}r das Studium der AD, einschließlich, aber nicht beschr{\"a}nkt auf mechanistische Studien zur epigenetischen Dysregulation unter Verwendung dieser Plattform. Neben der Skizzierung der bisherigen Forschung mit iPSC-basierten Modellen f{\"u}r sAD gibt der zweite Teil der Arbeit auch Einblicke in die Gewinnung krankheitsrelevanter Nervenkulturen auf Basis der gezielten Differenzierung von iPSCs und beinhaltet dar{\"u}ber hinaus einen experimentellen Ansatz f{\"u}r den Aufbau eines solchen Modellsystems.}, subject = {Epigenetik}, language = {en} } @phdthesis{Klein2001, author = {Klein, Andreas}, title = {Der altersabh{\"a}ngige Verlust der Geschlechtschromosomen beim Menschen unter Einwirkung von 5-Azadeoxycytidin}, doi = {10.25972/OPUS-32771}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327714}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Die vorliegende Arbeit untersucht, ob mit zunehmendem Alter w{\"a}hrend der Mitose h{\"a}ufiger Geschlechtschromsomen verlorengehen. Die Beobachtungen erfolgten an Lymphozytenkulturen gesunder weiblicher und m{\"a}nnlicher Probanden aus drei verschiedenen Altersgruppen. Unter Zugabe von 5-Azadeoxycytidin, einem Nukleosidanalogon, ergab sich in den h{\"o}heren Altersgruppen ein verst{\"a}rktes Auftreten von Mikronuklei. Mikronuklei enthalten Chromosomen oder -bruchst{\"u}cke, die w{\"a}hrend der Mitose nicht in die Tochterzellkerne integriert wurden. Mittels in situ Hybridisierung konnte in den Mikronuklei der Frauen zu 5,5 Prozent ein X-Chromosom, bei den M{\"a}nnern mit 10,7 Prozent {\"u}berzuf{\"a}llig h{\"a}ufig ein Y-Chromosom nachgewiesen werden. Zwischen den einzelnen Altersstufen {\"a}nderte sich dieser Anteil nicht wesentlich. 5-Azadeoxycytidin wird als Nukleosidanalogon w{\"a}hrend der Replikation in die DNA eingebaut und verhindert die Methylierung des Tochterstrangs, da ein Kohlenstoffatom im Pyrimidinrings durch ein Stickstoffatom substituiert ist. Wahrscheinlich resultiert aus der Hyomethylierung eine falsche "Verpackung" des Gonosoms w{\"a}hrend der Mitose, dadurch erfolgt eine fehlerhafte Aufteilung des Chromosoms mit Bildung eines Mikronukleus.}, language = {de} } @article{PlutaHoffjanZimmeretal.2022, author = {Pluta, Natalie and Hoffjan, Sabine and Zimmer, Frederic and K{\"o}hler, Cornelia and L{\"u}cke, Thomas and Mohr, Jennifer and Vorgerd, Matthias and Nguyen, Hoa Huu Phuc and Atlan, David and Wolf, Beat and Zaum, Ann-Kathrin and Rost, Simone}, title = {Homozygous inversion on chromosome 13 involving SGCG detected by short read whole genome sequencing in a patient suffering from limb-girdle muscular dystrophy}, series = {Genes}, volume = {13}, journal = {Genes}, number = {10}, issn = {2073-4425}, doi = {10.3390/genes13101752}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288122}, year = {2022}, abstract = {New techniques in molecular genetic diagnostics now allow for accurate diagnosis in a large proportion of patients with muscular diseases. Nevertheless, many patients remain unsolved, although the clinical history and/or the muscle biopsy give a clear indication of the involved genes. In many cases, there is a strong suspicion that the cause must lie in unexplored gene areas, such as deep-intronic or other non-coding regions. In order to find these changes, next-generation sequencing (NGS) methods are constantly evolving, making it possible to sequence entire genomes to reveal these previously uninvestigated regions. Here, we present a young woman who was strongly suspected of having a so far genetically unsolved sarcoglycanopathy based on her clinical history and muscle biopsy. Using short read whole genome sequencing (WGS), a homozygous inversion on chromosome 13 involving SGCG and LINC00621 was detected. The breakpoint in intron 2 of SGCG led to the absence of γ-sarcoglycan, resulting in the manifestation of autosomal recessive limb-girdle muscular dystrophy 5 (LGMDR5) in the young woman.}, language = {en} } @article{NandaSchroederSteinleinetal.2022, author = {Nanda, Indrajit and Schr{\"o}der, Sarah K. and Steinlein, Claus and Haaf, Thomas and Buhl, Eva M. and Grimm, Domink G. and Weiskirchen, Ralf}, title = {Rat hepatic stellate cell line CFSC-2G: genetic markers and short tandem repeat profile useful for cell line authentication}, series = {Cells}, volume = {11}, journal = {Cells}, number = {18}, issn = {2073-4409}, doi = {10.3390/cells11182900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288067}, year = {2022}, abstract = {Hepatic stellate cells (HSCs) are also known as lipocytes, fat-storing cells, perisinusoidal cells, or Ito cells. These liver-specific mesenchymal cells represent about 5\% to 8\% of all liver cells, playing a key role in maintaining the microenvironment of the hepatic sinusoid. Upon chronic liver injury or in primary culture, these cells become activated and transdifferentiate into a contractile phenotype, i.e., the myofibroblast, capable of producing and secreting large quantities of extracellular matrix compounds. Based on their central role in the initiation and progression of chronic liver diseases, cultured HSCs are valuable in vitro tools to study molecular and cellular aspects of liver diseases. However, the isolation of these cells requires special equipment, trained personnel, and in some cases needs approval from respective authorities. To overcome these limitations, several immortalized HSC lines were established. One of these cell lines is CFSC, which was originally established from cirrhotic rat livers induced by carbon tetrachloride. First introduced in 1991, this cell line and derivatives thereof (i.e., CFSC-2G, CFSC-3H, CFSC-5H, and CFSC-8B) are now used in many laboratories as an established in vitro HSC model. We here describe molecular features that are suitable for cell authentication. Importantly, chromosome banding and multicolor spectral karyotyping (SKY) analysis demonstrate that the CFSC-2G genome has accumulated extensive chromosome rearrangements and most chromosomes exist in multiple copies producing a pseudo-triploid karyotype. Furthermore, our study documents a defined short tandem repeat (STR) profile including 31 species-specific markers, and a list of genes expressed in CFSC-2G established by bulk mRNA next-generation sequencing (NGS).}, language = {en} } @article{BauerMallyLiedtke2021, author = {Bauer, Benedikt and Mally, Angela and Liedtke, Daniel}, title = {Zebrafish embryos and larvae as alternative animal models for toxicity testing}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {24}, issn = {1422-0067}, doi = {10.3390/ijms222413417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284225}, year = {2021}, abstract = {Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.}, language = {en} } @article{DollKolbSchnappetal.2020, author = {Doll, Julia and Kolb, Susanne and Schnapp, Linda and Rad, Aboulfazl and R{\"u}schendorf, Franz and Khan, Imran and Adli, Abolfazl and Hasanzadeh, Atefeh and Liedtke, Daniel and Knaup, Sabine and Hofrichter, Michaela AH and M{\"u}ller, Tobias and Dittrich, Marcus and Kong, Il-Keun and Kim, Hyung-Goo and Haaf, Thomas and Vona, Barbara}, title = {Novel loss-of-function variants in CDC14A are associated with recessive sensorineural hearing loss in Iranian and Pakistani patients}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms21010311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285142}, year = {2020}, abstract = {CDC14A encodes the Cell Division Cycle 14A protein and has been associated with autosomal recessive non-syndromic hearing loss (DFNB32), as well as hearing impairment and infertile male syndrome (HIIMS) since 2016. To date, only nine variants have been associated in patients whose initial symptoms included moderate-to-profound hearing impairment. Exome analysis of Iranian and Pakistani probands who both showed bilateral, sensorineural hearing loss revealed a novel splice site variant (c.1421+2T>C, p.?) that disrupts the splice donor site and a novel frameshift variant (c.1041dup, p.Ser348Glnfs*2) in the gene CDC14A, respectively. To evaluate the pathogenicity of both loss-of-function variants, we analyzed the effects of both variants on the RNA-level. The splice variant was characterized using a minigene assay. Altered expression levels due to the c.1041dup variant were assessed using RT-qPCR. In summary, cDNA analysis confirmed that the c.1421+2T>C variant activates a cryptic splice site, resulting in a truncated transcript (c.1414_1421del, p.Val472Leufs*20) and the c.1041dup variant results in a defective transcript that is likely degraded by nonsense-mediated mRNA decay. The present study functionally characterizes two variants and provides further confirmatory evidence that CDC14A is associated with a rare form of hereditary hearing loss.}, language = {en} } @article{DumontWeberLassalleJolyBeauparlantetal.2022, author = {Dumont, Martine and Weber-Lassalle, Nana and Joly-Beauparlant, Charles and Ernst, Corinna and Droit, Arnaud and Feng, Bing-Jian and Dubois, St{\´e}phane and Collin-Deschesnes, Annie-Claude and Soucy, Penny and Vall{\´e}e, Maxime and Fournier, Fr{\´e}d{\´e}ric and Lema{\c{c}}on, Audrey and Adank, Muriel A. and Allen, Jamie and Altm{\"u}ller, Janine and Arnold, Norbert and Ausems, Margreet G. E. M. and Berutti, Riccardo and Bolla, Manjeet K. and Bull, Shelley and Carvalho, Sara and Cornelissen, Sten and Dufault, Michael R. and Dunning, Alison M. and Engel, Christoph and Gehrig, Andrea and Geurts-Giele, Willemina R. R. and Gieger, Christian and Green, Jessica and Hackmann, Karl and Helmy, Mohamed and Hentschel, Julia and Hogervorst, Frans B. L. and Hollestelle, Antoinette and Hooning, Maartje J. and Horv{\´a}th, Judit and Ikram, M. Arfan and Kaulfuß, Silke and Keeman, Renske and Kuang, Da and Luccarini, Craig and Maier, Wolfgang and Martens, John W. M. and Niederacher, Dieter and N{\"u}rnberg, Peter and Ott, Claus-Eric and Peters, Annette and Pharoah, Paul D. P. and Ramirez, Alfredo and Ramser, Juliane and Riedel-Heller, Steffi and Schmidt, Gunnar and Shah, Mitul and Scherer, Martin and St{\"a}bler, Antje and Strom, Tim M. and Sutter, Christian and Thiele, Holger and van Asperen, Christi J. and van der Kolk, Lizet and van der Luijt, Rob B. and Volk, Alexander E. and Wagner, Michael and Waisfisz, Quinten and Wang, Qin and Wang-Gohrke, Shan and Weber, Bernhard H. F. and Devilee, Peter and Tavtigian, Sean and Bader, Gary D. and Meindl, Alfons and Goldgar, David E. and Andrulis, Irene L. and Schmutzler, Rita K. and Easton, Douglas F. and Schmidt, Marjanka K. and Hahnen, Eric and Simard, Jacques}, title = {Uncovering the contribution of moderate-penetrance susceptibility genes to breast cancer by whole-exome sequencing and targeted enrichment sequencing of candidate genes in women of European ancestry}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {14}, issn = {2072-6694}, doi = {10.3390/cancers14143363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281768}, year = {2022}, abstract = {Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.}, language = {en} } @article{RolfesBordeMoellenhoffetal.2022, author = {Rolfes, Muriel and Borde, Julika and M{\"o}llenhoff, Kathrin and Kayali, Mohamad and Ernst, Corinna and Gehrig, Andrea and Sutter, Christian and Ramser, Juliane and Niederacher, Dieter and Horv{\´a}th, Judit and Arnold, Norbert and Meindl, Alfons and Auber, Bernd and Rump, Andreas and Wang-Gohrke, Shan and Ritter, Julia and Hentschel, Julia and Thiele, Holger and Altm{\"u}ller, Janine and N{\"u}rnberg, Peter and Rhiem, Kerstin and Engel, Christoph and Wappenschmidt, Barbara and Schmutzler, Rita K. and Hahnen, Eric and Hauke, Jan}, title = {Prevalence of cancer predisposition germline variants in male breast cancer patients: results of the German Consortium for Hereditary Breast and Ovarian Cancer}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {13}, issn = {2072-6694}, doi = {10.3390/cancers14133292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281758}, year = {2022}, abstract = {Male breast cancer (mBC) is associated with a high prevalence of pathogenic variants (PVs) in the BRCA2 gene; however, data regarding other BC predisposition genes are limited. In this retrospective multicenter study, we investigated the prevalence of PVs in BRCA1/2 and 23 non-BRCA1/2 genes using a sample of 614 patients with mBC, recruited through the centers of the German Consortium for Hereditary Breast and Ovarian Cancer. A high proportion of patients with mBC carried PVs in BRCA2 (23.0\%, 142/614) and BRCA1 (4.6\%, 28/614). The prevalence of BRCA1/2 PVs was 11.0\% in patients with mBC without a family history of breast and/or ovarian cancer. Patients with BRCA1/2 PVs did not show an earlier disease onset than those without. The predominant clinical presentation of tumor phenotypes was estrogen receptor (ER)-positive, progesterone receptor (PR)-positive, and HER2-negative (77.7\%); further, 10.2\% of the tumors were triple-positive, and 1.2\% were triple-negative. No association was found between ER/PR/HER2 status and BRCA1/2 PV occurrence. Comparing the prevalence of protein-truncating variants (PTVs) between patients with mBC and control data (ExAC, n = 27,173) revealed significant associations of PTVs in both BRCA1 and BRCA2 with mBC (BRCA1: OR = 17.04, 95\% CI = 10.54-26.82, p < 10\(^{-5}\); BRCA2: OR = 77.71, 95\% CI = 58.71-102.33, p < 10\(^{-5}\)). A case-control investigation of 23 non-BRCA1/2 genes in 340 BRCA1/2-negative patients and ExAC controls revealed significant associations of PTVs in CHEK2, PALB2, and ATM with mBC (CHEK2: OR = 3.78, 95\% CI = 1.59-7.71, p = 0.002; PALB2: OR = 14.77, 95\% CI = 5.02-36.02, p < 10\(^{-5}\); ATM: OR = 3.36, 95\% CI = 0.89-8.96, p = 0.04). Overall, our findings support the benefit of multi-gene panel testing in patients with mBC irrespective of their family history, age at disease onset, and tumor phenotype.}, language = {en} } @article{NandaSteinleinHaafetal.2022, author = {Nanda, Indrajit and Steinlein, Claus and Haaf, Thomas and Buhl, Eva M. and Grimm, Domink G. and Friedman, Scott L. and Meurer, Steffen K. and Schr{\"o}der, Sarah K. and Weiskirchen, Ralf}, title = {Genetic characterization of rat hepatic stellate cell line HSC-T6 for in vitro cell line authentication}, series = {Cells}, volume = {11}, journal = {Cells}, number = {11}, issn = {2073-4409}, doi = {10.3390/cells11111783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275178}, year = {2022}, abstract = {Immortalized hepatic stellate cells (HSCs) established from mouse, rat, and humans are valuable in vitro models for the biomedical investigation of liver biology. These cell lines are homogenous, thereby providing consistent and reproducible results. They grow more robustly than primary HSCs and provide an unlimited supply of proteins or nucleic acids for biochemical studies. Moreover, they can overcome ethical concerns associated with the use of animal and human tissue and allow for fostering of the 3R principle of replacement, reduction, and refinement proposed in 1959 by William M. S. Russell and Rex L. Burch. Nevertheless, working with continuous cell lines also has some disadvantages. In particular, there are ample examples in which genetic drift and cell misidentification has led to invalid data. Therefore, many journals and granting agencies now recommend proper cell line authentication. We herein describe the genetic characterization of the rat HSC line HSC-T6, which was introduced as a new in vitro model for the study of retinoid metabolism. The consensus chromosome markers, outlined primarily through multicolor spectral karyotyping (SKY), demonstrate that apart from the large derivative chromosome 1 (RNO1), at least two additional chromosomes (RNO4 and RNO7) are found to be in three copies in all metaphases. Additionally, we have defined a short tandem repeat (STR) profile for HSC-T6, including 31 species-specific markers. The typical features of these cells have been further determined by electron microscopy, Western blotting, and Rhodamine-Phalloidin staining. Finally, we have analyzed the transcriptome of HSC-T6 cells by mRNA sequencing (mRNA-Seq) using next generation sequencing (NGS).}, language = {en} } @article{PrellSenPotabattulaetal.2022, author = {Prell, Andreas and Sen, Mustafa Orkun and Potabattula, Ramya and Bernhardt, Laura and Dittrich, Marcus and Hahn, Thomas and Schorsch, Martin and Zacchini, Federica and Ptak, Grazyna Ewa and Niemann, Heiner and Haaf, Thomas}, title = {Species-specific paternal age effects and sperm methylation levels of developmentally important genes}, series = {Cells}, volume = {11}, journal = {Cells}, number = {4}, issn = {2073-4409}, doi = {10.3390/cells11040731}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262301}, year = {2022}, abstract = {A growing number of sperm methylome analyses have identified genomic loci that are susceptible to paternal age effects in a variety of mammalian species, including human, bovine, and mouse. However, there is little overlap between different data sets. Here, we studied whether or not paternal age effects on the sperm epigenome have been conserved in mammalian evolution and compared methylation patterns of orthologous regulatory regions (mainly gene promoters) containing both conserved and non-conserved CpG sites in 94 human, 36 bovine, and 94 mouse sperm samples, using bisulfite pyrosequencing. We discovered three (NFKB2, RASGEF1C, and RPL6) age-related differentially methylated regions (ageDMRs) in humans, four (CHD7, HDAC11, PAK1, and PTK2B) in bovines, and three (Def6, Nrxn2, and Tbx19) in mice. Remarkably, the identified sperm ageDMRs were all species-specific. Most ageDMRs were in genomic regions with medium methylation levels and large methylation variation. Orthologous regions in species not showing this age effect were either hypermethylated (>80\%) or hypomethylated (<20\%). In humans and mice, ageDMRs lost methylation, whereas bovine ageDMRs gained methylation with age. Our results are in line with the hypothesis that sperm ageDMRs are in regions under epigenomic evolution and may be part of an epigenetic mechanism(s) for lineage-specific environmental adaptations and provide a solid basis for studies on downstream effects in the genes analyzed here.}, language = {en} } @article{WagenhaeuserRickertSommeretal.2022, author = {Wagenh{\"a}user, Laura and Rickert, Vanessa and Sommer, Claudia and Wanner, Christoph and Nordbeck, Peter and Rost, Simone and {\"U}{\c{c}}eyler, Nurcan}, title = {X-chromosomal inactivation patterns in women with Fabry disease}, series = {Molecular Genetics \& Genomic Medicine}, volume = {10}, journal = {Molecular Genetics \& Genomic Medicine}, number = {9}, doi = {10.1002/mgg3.2029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312795}, year = {2022}, abstract = {Background Although Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene (GLA), women may develop severe symptoms. We investigated X-chromosomal inactivation patterns (XCI) as a potential determinant of symptom severity in FD women. Patients and Methods We included 95 women with mutations in GLA (n = 18 with variants of unknown pathogenicity) and 50 related men, and collected mouth epithelial cells, venous blood, and skin fibroblasts for XCI analysis using the methylation status of the androgen receptor gene. The mutated X-chromosome was identified by comparison of samples from relatives. Patients underwent genotype categorization and deep clinical phenotyping of symptom severity. Results 43/95 (45\%) women carried mutations categorized as classic. The XCI pattern was skewed (i.e., ≥75:25\% distribution) in 6/87 (7\%) mouth epithelial cell samples, 31/88 (35\%) blood samples, and 9/27 (33\%) skin fibroblast samples. Clinical phenotype, α-galactosidase A (GAL) activity, and lyso-Gb3 levels did not show intergroup differences when stratified for X-chromosomal skewing and activity status of the mutated X-chromosome. Conclusions X-inactivation patterns alone do not reliably reflect the clinical phenotype of women with FD when investigated in biomaterial not directly affected by FD. However, while XCI patterns may vary between tissues, blood frequently shows skewing of XCI patterns.}, language = {en} } @article{WeberLassalleHaukeRamseretal.2018, author = {Weber-Lassalle, Nana and Hauke, Jan and Ramser, Juliane and Richters, Lisa and Groß, Eva and Bl{\"u}mcke, Britta and Gehrig, Andrea and Kahlert, Anne-Karin and M{\"u}ller, Clemens R. and Hackmann, Karl and Honisch, Ellen and Weber-Lassalle, Konstantin and Niederacher, Dieter and Borde, Julika and Thiele, Holger and Ernst, Corinna and Altm{\"u}ller, Janine and Neidhardt, Guido and N{\"u}rnberg, Peter and Klaschik, Kristina and Schroeder, Christopher and Platzer, Konrad and Volk, Alexander E. and Wang-Gohrke, Shan and Just, Walter and Auber, Bernd and Kubisch, Christian and Schmidt, Gunnar and Horvath, Judit and Wappenschmidt, Barbara and Engel, Christoph and Arnold, Norbert and Dworniczak, Bernd and Rhiem, Kerstin and Meindl, Alfons and Schmutzler, Rita K. and Hahnen, Eric}, title = {BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer}, series = {Breast Cancer Research}, volume = {20}, journal = {Breast Cancer Research}, doi = {10.1186/s13058-018-0935-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233433}, year = {2018}, abstract = {Background Germline mutations in the BRIP1 gene have been described as conferring a moderate risk for ovarian cancer (OC), while the role of BRIP1 in breast cancer (BC) pathogenesis remains controversial. Methods To assess the role of deleterious BRIP1 germline mutations in BC/OC predisposition, 6341 well-characterized index patients with BC, 706 index patients with OC, and 2189 geographically matched female controls were screened for loss-of-function (LoF) mutations and potentially damaging missense variants. All index patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germline testing and tested negative for pathogenic BRCA1/2 variants. Results BRIP1 LoF mutations confer a high OC risk in familial index patients (odds ratio (OR) = 20.97, 95\% confidence interval (CI) = 12.02-36.57, P < 0.0001) and in the subgroup of index patients with late-onset OC (OR = 29.91, 95\% CI = 14.99-59.66, P < 0.0001). No significant association of BRIP1 LoF mutations with familial BC was observed (OR = 1.81 95\% CI = 1.00-3.30, P = 0.0623). In the subgroup of familial BC index patients without a family history of OC there was also no apparent association (OR = 1.42, 95\% CI = 0.70-2.90, P = 0.3030). In 1027 familial BC index patients with a family history of OC, the BRIP1 mutation prevalence was significantly higher than that observed in controls (OR = 3.59, 95\% CI = 1.43-9.01; P = 0.0168). Based on the negative association between BRIP1 LoF mutations and familial BC in the absence of an OC family history, we conclude that the elevated mutation prevalence in the latter cohort was driven by the occurrence of OC in these families. Compared with controls, predicted damaging rare missense variants were significantly more prevalent in OC (P = 0.0014) but not in BC (P = 0.0693) patients. Conclusions To avoid ambiguous results, studies aimed at assessing the impact of candidate predisposition gene mutations on BC risk might differentiate between BC index patients with an OC family history and those without. In familial cases, we suggest that BRIP1 is a high-risk gene for late-onset OC but not a BC predisposition gene, though minor effects cannot be excluded.}, language = {en} } @article{KoenigPechmannThieleetal.2019, author = {K{\"o}nig, Kirsten and Pechmann, Astrid and Thiele, Simone and Walter, Maggie C. and Schorling, David and Tassoni, Adrian and Lochm{\"u}ller, Hanns and M{\"u}ller-Reible, Clemens and Kirschner, Janbernd}, title = {De-duplicating patient records from three independent data sources reveals the incidence of rare neuromuscular disorders in Germany}, series = {Orphanet Journal of Rare Diseases}, volume = {14}, journal = {Orphanet Journal of Rare Diseases}, doi = {10.1186/s13023-019-1125-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222807}, year = {2019}, abstract = {Background Estimation of incidence in rare diseases is often challenging due to unspecific and incomplete coding and recording systems. Patient- and health care provider-driven data collections are held with different organizations behind firewalls to protect the privacy of patients. They tend to be fragmented, incomplete and their aggregation leads to further inaccuracies, as the duplicated records cannot easily be identified. We here report about a novel approach to evaluate the incidences of Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) in Germany. Methods We performed a retrospective epidemiological study collecting data from patients with dystrophinopathies (DMD and Becker muscular dystrophy) and SMA born between 1995 and 2018. We invited all neuromuscular centers, genetic institutes and the patient registries for DMD and SMA in Germany to participate in the data collection. A novel web-based application for data entry was developed converting patient identifying information into a hash code. Duplicate entries were reliably allocated to the distinct patient. Results We collected 5409 data entries in our web-based database representing 1955 distinct patients with dystrophinopathies and 1287 patients with SMA. 55.0\% of distinct patients were found in one of the 3 data sources only, while 32.0\% were found in 2, and 13.0\% in all 3 data sources. The highest number of SMA patients was reported by genetic testing laboratories, while for DMD the highest number was reported by the clinical specialist centers. After the removal of duplicate records, the highest yearly incidence for DMD was calculated as 2.57:10,000 in 2001 and the highest incidence for SMA as 1.36:10,000 in 2014. Conclusion With our novel approach (compliant with data protection regulations), we were able to identify unique patient records and estimate the incidence of DMD and SMA in Germany combining and de-duplicating data from patient registries, genetic institutes, and clinical care centers. Although we combined three different data sources, an unknown number of patients might not have been reported by any of these sources. Therefore, our results reflect the minimal incidence of these diseases.}, language = {en} } @article{ZinkSeewaldRohrbachetal.2022, author = {Zink, Miriam and Seewald, Anne and Rohrbach, Mareike and Brodehl, Andreas and Liedtke, Daniel and Williams, Tatjana and Childs, Sarah J. and Gerull, Brenda}, title = {Altered expression of TMEM43 causes abnormal cardiac structure and function in zebrafish}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {17}, issn = {1422-0067}, doi = {10.3390/ijms23179530}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286025}, year = {2022}, abstract = {Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease caused by heterozygous missense mutations within the gene encoding for the nuclear envelope protein transmembrane protein 43 (TMEM43). The disease is characterized by myocyte loss and fibro-fatty replacement, leading to life-threatening ventricular arrhythmias and sudden cardiac death. However, the role of TMEM43 in the pathogenesis of ACM remains poorly understood. In this study, we generated cardiomyocyte-restricted transgenic zebrafish lines that overexpress eGFP-linked full-length human wild-type (WT) TMEM43 and two genetic variants (c.1073C>T, p.S358L; c.332C>T, p.P111L) using the Tol2-system. Overexpression of WT and p.P111L-mutant TMEM43 was associated with transcriptional activation of the mTOR pathway and ribosome biogenesis, and resulted in enlarged hearts with cardiomyocyte hypertrophy. Intriguingly, mutant p.S358L TMEM43 was found to be unstable and partially redistributed into the cytoplasm in embryonic and adult hearts. Moreover, both TMEM43 variants displayed cardiac morphological defects at juvenile stages and ultrastructural changes within the myocardium, accompanied by dysregulated gene expression profiles in adulthood. Finally, CRISPR/Cas9 mutants demonstrated an age-dependent cardiac phenotype characterized by heart enlargement in adulthood. In conclusion, our findings suggest ultrastructural remodeling and transcriptomic alterations underlying the development of structural and functional cardiac defects in TMEM43-associated cardiomyopathy.}, language = {en} } @phdthesis{Wagenhaeuser2023, author = {Wagenh{\"a}user, Laura Maria}, title = {Die Auswirkungen der X-Inaktivierung auf den klinischen Ph{\"a}notyp bei Patientinnen mit Morbus Fabry}, doi = {10.25972/OPUS-31153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311530}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {M. Fabry ist eine X-chromosomal vererbte Stoffwechselerkrankung. Die Mutation im α-Galactosidase A Gen f{\"u}hrt zur reduzierten Aktivit{\"a}t des Enzyms und zur Akkumulation der Stoffwechselprodukte im gesamten K{\"o}rper. Von der daraus resultierenden Multiorganerkrankung sind sowohl M{\"a}nner, als auch Frauen betroffen. Als Grund hierf{\"u}r steht eine verschobene X-Inaktivierung zur Diskussion. In der vorliegenden Arbeit wurden 104 Frauen rekrutiert und die X-Inaktivierungsmuster in Mundschleimhautepithel, Blut und Hautfibroblasten untersucht. Es wurden umfangreiche klinische und laborchemische Untersuchungen durchgef{\"u}hrt, sodass von jeder Patientin ein klinischer Ph{\"a}notyp vorlag, der mit Hilfe eines numerischen Scores klassifiziert wurde. Es zeigte sich, dass Blut ein leicht zu asservierendes Biomaterial mit einer hohen Pr{\"a}valenz an verschobenen X-Inaktivierungsmustern darstellt. Eine signifikante Korrelation mit dem klinischen Ph{\"a}notyp konnte in keinem der drei untersuchten Gewebe nachgewiesen werden.}, subject = {Fabry-Krankheit}, language = {de} } @article{NandaSchoriesSimeonovetal.2022, author = {Nanda, Indrajit and Schories, Susanne and Simeonov, Ivan and Adolfi, Mateus Contar and Du, Kang and Steinlein, Claus and Alsheimer, Manfred and Haaf, Thomas and Schartl, Manfred}, title = {Evolution of the degenerated Y-chromosome of the swamp guppy, Micropoecilia picta}, series = {Cells}, volume = {11}, journal = {Cells}, number = {7}, issn = {2073-4409}, doi = {10.3390/cells11071118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267242}, year = {2022}, abstract = {The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler's and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel.}, language = {en} } @article{LorenzMusacchioKunstmannetal.2022, author = {Lorenz, Delia and Musacchio, Thomas and Kunstmann, Erdmute and Grauer, Eva and Pluta, Natalie and Stock, Annika and Speer, Christian P. and Hebestreit, Helge}, title = {A case report of Sanfilippo syndrome - the long way to diagnosis}, series = {BMC Neurology}, volume = {22}, journal = {BMC Neurology}, number = {1}, doi = {10.1186/s12883-022-02611-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300465}, year = {2022}, abstract = {Background Mucopolysaccharidosis type III (Sanfilippo syndrome) is a lysosomal storage disorder, caused by a deficiency in the heparan-N-sulfatase enzyme involved in the catabolism of the glycosaminoglycan heparan sulfate. It is characterized by early nonspecific neuropsychiatric symptoms, followed by progressive neurocognitive impairment in combination with only mild somatic features. In this patient group with a broad clinical spectrum a significant genotype-phenotype correlation with some mutations leading to a slower progressive, attenuated course has been demonstrated. Case presentation Our patient had complications in the neonatal period and was diagnosed with Mucopolysaccharidosis IIIa only at the age of 28 years. He was compound heterozygous for the variants p.R245H and p.S298P, the latter having been shown to lead to a significantly milder phenotype. Conclusions The diagnostic delay is even more prolonged in this patient population with comorbidities and a slowly progressive course of the disease.}, language = {en} } @article{SepahiFaustSturmetal.2019, author = {Sepahi, Ilnaz and Faust, Ulrike and Sturm, Marc and Bosse, Kristin and Kehrer, Martin and Heinrich, Tilman and Grundman-Hauser, Kathrin and Bauer, Peter and Ossowski, Stephan and Susak, Hana and Varon, Raymonda and Schr{\"o}ck, Evelin and Niederacher, Dieter and Auber, Bernd and Sutter, Christian and Arnold, Norbert and Hahnen, Eric and Dworniczak, Bernd and Wang-Gorke, Shan and Gehrig, Andrea and Weber, Bernhard H. F. and Engel, Christoph and Lemke, Johannes R. and Hartkopf, Andreas and Huu Phuc, Nguyen and Riess, Olaf and Schroeder, Christopher}, title = {Investigating the effects of additional truncating variants in DNA-repair genes on breast cancer risk in BRCA1-positive women}, series = {BMC Cancer}, volume = {19}, journal = {BMC Cancer}, doi = {10.1186/s12885-019-5946-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237676}, year = {2019}, abstract = {Background Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72\%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon. Methods We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways. Results Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00-27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2\%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6\%; 95\%-CI 24.7 - 47.7\%) compared to 16 women of controls (26.7\%; 95\%-CI 16.1 to 39.7\%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95\%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05. Conclusions To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results.}, language = {en} } @article{EngelRhiemHahnenetal.2018, author = {Engel, Christoph and Rhiem, Kerstin and Hahnen, Eric and Loibl, Sibylle and Weber, Karsten E. and Seiler, Sabine and Zachariae, Silke and Hauke, Jan and Wappenschmidt, Barbara and Waha, Anke and Bl{\"u}mcke, Britta and Kiechle, Marion and Meindl, Alfons and Niederacher, Dieter and Bartram, Claus R. and Speiser, Dorothee and Schlegelberger, Brigitte and Arnold, Norbert and Wieacker, Peter and Leinert, Elena and Gehrig, Andrea and Briest, Susanne and Kast, Karin and Riess, Olaf and Emons, G{\"u}nter and Weber, Bernhard H. F. and Engel, Jutta and Schmutzler, Rita K.}, title = {Prevalence of pathogenic BRCA1/2 germline mutations among 802 women with unilateral triple-negative breast cancer without family cancer history}, series = {BMC Cancer}, volume = {18}, journal = {BMC Cancer}, organization = {German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC)}, doi = {10.1186/s12885-018-4029-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226763}, year = {2018}, abstract = {Background There is no international consensus up to which age women with a diagnosis of triple-negative breast cancer (TNBC) and no family history of breast or ovarian cancer should be offered genetic testing for germline BRCA1 and BRCA2 (gBRCA) mutations. Here, we explored the association of age at TNBC diagnosis with the prevalence of pathogenic gBRCA mutations in this patient group. Methods The study comprised 802 women (median age 40 years, range 19-76) with oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2 negative breast cancers, who had no relatives with breast or ovarian cancer. All women were tested for pathogenic gBRCA mutations. Logistic regression analysis was used to explore the association between age at TNBC diagnosis and the presence of a pathogenic gBRCA mutation. Results A total of 127 women with TNBC(15.8\%) were gBRCA mutation carriers (BRCA1: n = 118, 14.7\%; BRCA2: n = 9, 1. 1\%). The mutation prevalence was 32.9\% in the age group 20-29 years compared to 6.9\% in the age group 60-69 years. Logistic regression analysis revealed a significant increase of mutation frequency with decreasing age at diagnosis (odds ratio 1.87 per 10 year decrease, 95\% CI 1.50-2.32, p < 0.001). gBRCA mutation risk was predicted to be > 10\% for women diagnosed below approximately 50 years. Conclusions Based on the general understanding that a heterozygous mutation probability of 10\% or greater justifies gBRCA mutation screening, women with TNBC diagnosed before the age of 50 years and no familial history of breast and ovarian cancer should be tested for gBRCA mutations. In Germany, this would concern approximately 880 women with newly diagnosed TNBC per year, of whom approximately 150 are expected to be identified as carriers of a pathogenic gBRCA mutation.}, language = {en} } @article{SathyanarayanaLeeWrightetal.2018, author = {Sathyanarayana, Vijaya and Lee, Beth and Wright, Neville B. and Santos, Rui and Bonney, Denise and Wynn, Robert and Patel, Leena and Chandler, Kate and Cheesman, Ed and Schindler, Detlev and Webb, Nicholas J. A. and Meyer, Stefan}, title = {Patterns and frequency of renal abnormalities in Fanconi anaemia: implications for long-term management}, series = {Pediatric Nephrology}, volume = {33}, journal = {Pediatric Nephrology}, number = {9}, doi = {10.1007/s00467-018-3952-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227400}, pages = {1547-1551}, year = {2018}, abstract = {Fanconi anaemia (FA) is an inherited disease with bone marrow failure, variable congenital and developmental abnormalities, and cancer predisposition. With improved survival, non-haematological manifestations of FA become increasingly important for long-term management. While renal abnormalities are recognized, detailed data on patterns and frequency and implications for long-term management are sparse. We reviewed clinical course and imaging findings of FA patients with respect to renal complications in our centre over a 25-year period to formulate some practical suggestions for guidelines for management of renal problems associated with FA. Thirty patients including four sibling sets were reviewed. On imaging, 14 had evidence of anatomical abnormalities of the kidneys. Two cases with severe phenotype, including renal abnormalities, had chronic kidney disease (CKD) at diagnosis. Haematopoietic stem cell transplantation was complicated by significant acute kidney injury (AKI) in three cases. In three patients, there was CKD at long-term follow-up. All patients had normal blood pressure. Evaluation of renal anatomy with ultrasound imaging is important at diagnostic workup of FA. While CKD is uncommon at diagnosis, our data suggests that the incidence of CKD increases with age, in particular after haematopoietic stem cell transplantation. Monitoring of renal function is essential for management of FA. Based on these long-term clinical observations, we formulate some practical guidelines for assessment and management of renal abnormalities in FA.}, language = {en} } @article{ZaumNandaKressetal.2022, author = {Zaum, Ann-Kathrin and Nanda, Indrajit and Kress, Wolfram and Rost, Simone}, title = {Detection of pericentric inversion with breakpoint in DMD by whole genome sequencing}, series = {Molecular Genetics \& Genomic Medicine}, volume = {10}, journal = {Molecular Genetics \& Genomic Medicine}, number = {10}, doi = {10.1002/mgg3.2028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293940}, year = {2022}, abstract = {Background Dystrophinopathies caused by variants in the DMD gene are a well-studied muscle disease. The most common type of variant in DMD are large deletions. Very rarely reported forms of variants are chromosomal translocations, inversions and deep intronic variants (DIVs) because they are not detectable by standard diagnostic techniques (sequencing of coding sequence, copy number variant detection). This might be the reason that some clinically and histologically proven dystrophinopathy cases remain unsolved. Methods We used whole genome sequencing (WGS) to screen the entire DMD gene for variants in one of two brothers suffering from typical muscular dystrophy with strongly elevated creatine kinase levels. Results Although a pathogenic DIV could not be detected, we were able to identify a pericentric inversion with breakpoints in DMD intron 44 and Xq13.3, which could be confirmed by Sanger sequencing in the index as well as in his brother and mother. As this variation affects a major part of DMD it is most likely disease causing. Conclusion Our findings elucidate that WGS is capable of detecting large structural rearrangements and might be suitable for the genetic diagnostics of dystrophinopathies in the future. In particular, inversions might be a more frequent cause for dystrophinopathies as anticipated and should be considered in genetically unsolved dystrophinopathy cases.}, language = {en} } @phdthesis{Riekert2022, author = {Riekert, Elisa}, title = {Der Einfluss von Tnap auf die Zahnentwicklung im Zebrafisch (Danio rerio)}, doi = {10.25972/OPUS-28740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287406}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Aufgrund mangelnder Aktivit{\"a}t der Gewebe-unspezifischen Phosphatase (tissue-nonspecific alkaline phosphatase, TNAP) kommt es zum Krankheitsbild der Hypophosphatasie (HPP). Neben skelettalen und neuronalen Symptomen leiden Patienten mit HPP h{\"a}ufig an einem vorzeitigen Verlust der Milchz{\"a}hne und weiteren dentalen Manifestationen, wie Zahnhartsubstanzdefekten, Eruptionsst{\"o}rungen, erweiterte Pulpenkammern oder einer verringerten alveol{\"a}ren Knochenh{\"o}he. Ziel der Arbeit war es, den Einfluss der TNAP auf die Zahnentwicklung von Zebrafischlarven zu untersuchen, um ein neues in-vivo Modell f{\"u}r die dentalen Auswirkungen bei Hypophosphatasie etablieren zu k{\"o}nnen. Um die sehr kleinen Z{\"a}hne der Zebrafischlarven auch in fr{\"u}hen Entwicklungsstadien darzustellen, wurden mittels verschiedener histologischer F{\"a}rbungen die Zahnstrukturen angef{\"a}rbt und die Larven danach in JB4®, einen polymeren Kunststoff, eingebettet. Im Anschluss wurden histologische Schnitte angefertigt und am Fluoreszenzmikroskop ausgewertet. Einerseits konnte durch In-situ-Hybridisierung die Expression verschiedener Gene, wie z.B. alpl (welches f{\"u}r die Tnap im Zebrafisch kodiert), im Bereich von dentalen Strukturen in verschiedenen Entwicklungsstadien nachgewiesen werden. Außerdem zeigte die Analyse der dentalen Strukturen nach Inhibition der Tnap mittels Levamisol bei f{\"u}nf Tage alten Zebrafischlarven eine Ver{\"a}nderung von Form, Gr{\"o}ße und Struktur der ersten Z{\"a}hne. Die TNAP-Inhibition f{\"u}hrte auch zur quantitativ nachweisbaren Steigerung des Fluoreszenzsignals von ß-Catenin, welches eine zentrale Funktion im Wnt/ß-Catenin-Signalweg besitzt und essenziell in verschiedenen zellul{\"a}ren Prozessen w{\"a}hrend der Embryogenese ist. Zusammenfassend zeigen die Ergebnisse der Arbeit, dass der Zebrafisch großes Potenzial als in-vivo Modell f{\"u}r die dentalen Symptome bei HPP bietet. Außerdem er{\"o}ffnen sich neue interessante Fragen in Bezug auf den Einfluss von ß-Catenin bei den fr{\"u}hen pathophysiologischen Prozessen der Erkrankung.}, subject = {Zebrab{\"a}rbling}, language = {de} } @phdthesis{Kiene2022, author = {Kiene, Carmen}, title = {Immunozytogenetische Analysen an Interphase-Zellen und Meiose-Stadien der Maus}, doi = {10.25972/OPUS-27910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279109}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In der vorliegenden Arbeit wurden mittels 5-Methylcytosin Immunof{\"a}rbung zytogenetische Analysen an Metaphasechromosomen aus der Mitose, an Interphase-Zellen verschiedener Organe und an Meiose-Stadien der Maus (Mus musculus) zur Detektion hypermethylierter DNA durchgef{\"u}hrt. Zus{\"a}tzlich erfolgte eine C-B{\"a}nderung an Metaphasechromosomen und Meiose-Stadien zum Nachweis von konstitutivem Heterochromatin.}, subject = {Cytogenetik}, language = {de} } @article{BahenaDaftarianMaroofianetal.2022, author = {Bahena, Paulina and Daftarian, Narsis and Maroofian, Reza and Linares, Paola and Villalobos, Daniel and Mirrahimi, Mehraban and Rad, Aboulfazl and Doll, Julia and Hofrichter, Michaela A. H. and Koparir, Asuman and R{\"o}der, Tabea and Han, Seungbin and Sabbaghi, Hamideh and Ahmadieh, Hamid and Behboudi, Hassan and Villanueva-Mendoza, Cristina and Cort{\´e}s-Gonzalez, Vianney and Zamora-Ortiz, Rocio and Kohl, Susanne and Kuehlewein, Laura and Darvish, Hossein and Alehabib, Elham and La Arenas-Sordo, Maria de Luz and Suri, Fatemeh and Vona, Barbara and Haaf, Thomas}, title = {Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment}, series = {Human Genetics}, volume = {141}, journal = {Human Genetics}, number = {3-4}, issn = {1432-1203}, doi = {10.1007/s00439-021-02303-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267750}, pages = {785-803}, year = {2022}, abstract = {Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf-blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75\%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15\%) probands displayed other genetic entities with dual sensory impairment, including Alstr{\"o}m syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf-blind cohort was 92\%. Two (3\%) probands were partially solved and only 3 (5\%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.}, language = {en} } @article{VonaMazaheriLinetal.2021, author = {Vona, Barbara and Mazaheri, Neda and Lin, Sheng-Jia and Dunbar, Lucy A. and Maroofian, Reza and Azaiez, Hela and Booth, Kevin T. and Vitry, Sandrine and Rad, Aboulfazl and R{\"u}schendorf, Franz and Varshney, Pratishtha and Fowler, Ben and Beetz, Christian and Alagramam, Kumar N. and Murphy, David and Shariati, Gholamreza and Sedaghat, Alireza and Houlden, Henry and Petree, Cassidy and VijayKumar, Shruthi and Smith, Richard J. H. and Haaf, Thomas and El-Amraoui, Aziz and Bowl, Michael R. and Varshney, Gaurav K. and Galehdari, Hamid}, title = {A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans}, series = {Human Genetics}, volume = {140}, journal = {Human Genetics}, number = {6}, issn = {1432-1203}, doi = {10.1007/s00439-020-02254-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267740}, pages = {915-931}, year = {2021}, abstract = {Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.}, language = {en} } @phdthesis{Kuehl2022, author = {K{\"u}hl, Julia}, title = {FAAP100, der FA/BRCA-Signalweg f{\"u}r genomische Stabilit{\"a}t und das DNA-Reparatur-Netzwerk}, doi = {10.25972/OPUS-17166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Fanconi-An{\"a}mie (FA) ist eine seltene, heterogene Erbkrankheit. Sie weist ein sehr variables klinisches Erscheinungsbild auf, das sich aus angeborenen Fehlbildungen, h{\"a}matologischen Funktionsst{\"o}rungen, einem erh{\"o}hten Risiko f{\"u}r Tumorentwicklung und endokrinen Pathologien zusammensetzt. Die Erkrankung z{\"a}hlt zu den genomischen Instabilit{\"a}tssyndromen, welche durch eine fehlerhafte DNA-Schadensreparatur gekennzeichnet sind. Bei der FA zeigt sich dies vor allem in einer charakteristischen Hypersensitivit{\"a}t gegen{\"u}ber DNA-quervernetzenden Substanzen (z. B. Mitomycin C, Cisplatin). Der zellul{\"a}re FA-Ph{\"a}notyp zeichnet sich durch eine erh{\"o}hte Chromosomenbr{\"u}chigkeit und einen Zellzyklusarrest in der G2-Phase aus. Diese Charakteristika sind bereits spontan vorhanden und werden durch Induktion mit DNA-quervernetzenden Substanzen verst{\"a}rkt. Der Gendefekt ist dabei in einem der 22 bekannten FA-Gene (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U, -V, -W) oder in noch unbekannten FA-Genen zu finden. Die FA-Gendefekte werden mit Ausnahme von FANCR (dominant-negative de novo Mutationen) und FANCB (X-chromosomal) autosomal rezessiv vererbt. Die FA-Genprodukte bilden zusammen mit weiteren Proteinen den FA/BRCA-Signalweg. Das Schl{\"u}sselereignis dieses Signalwegs stellt die Monoubiquitinierung von FANCD2 und FANCI (ID2-Komplex) dar. Ausgehend davon l{\"a}sst sich zwischen upstream- und downstream-gelegenen FA-Proteinen unterscheiden. Letztere sind direkt an der DNA-Schadensreparatur beteiligt. Zu den upstream-gelegenen Proteinen z{\"a}hlt der FA-Kernkomplex, der sich aus bekannten FA-Proteinen und aus FA-assoziierten-Proteinen (FAAPs) zusammensetzt und f{\"u}r die Monoubiquitinierung des ID2-Komplexes verantwortlich ist. F{\"u}r FAAPs wurden bisher keine pathogenen humanen Mutationen beschrieben. Zu diesen Proteinen geh{\"o}rt auch FAAP100, das mit FANCB und FANCL innerhalb des FA-Kernkomplexes den Subkomplex LBP100 bildet. Durch die vorliegende Arbeit wurde eine n{\"a}here Charakterisierung dieses Proteins erreicht. In einer Amnion-Zelllinie konnte eine homozygote Missense-Mutation identifiziert werden. Der Fetus zeigte einen typischen FA-Ph{\"a}notyp und auch seine Zellen wiesen charakteristische FA-Merkmale auf. Der zellul{\"a}re Ph{\"a}notyp ließ sich durch FAAP100WT komplementieren, sodass die Pathogenit{\"a}t der Mutation bewiesen war. Unterst{\"u}tzend dazu wurden mithilfe des CRISPR/Cas9-Systems weitere FAAP100-defiziente Zelllinien generiert. Diese zeigten ebenfalls einen typischen FA-Ph{\"a}notyp, welcher sich durch FAAP100WT komplementieren ließ. Die in vitro-Modelle dienten als Grundlage daf{\"u}r, die Funktion des FA-Kernkomplexes im Allgemeinen und die des Subkomplexes LBP100 im Besonderen besser zu verstehen. Dabei kann nur durch intaktes FAAP100 das LBP100-Modul gebildet und dieses an die DNA-Schadensstelle transportiert werden. Dort leistet FAAP100 einen essentiellen Beitrag f{\"u}r den FANCD2-Monoubiquitinierungsprozess und somit f{\"u}r die Aktivierung der FA-abh{\"a}ngigen DNA-Schadensreparatur. Um die Funktion von FAAP100 auch in vivo zu untersuchen, wurde ein Faap100-/--Mausmodell generiert, das einen mit anderen FA-Mausmodellen vergleichbaren, relativ schweren FA-Ph{\"a}notyp aufwies. Aufgrund der Ergebnisse l{\"a}sst sich FAAP100 als neues FA-Gen klassifizieren. Zudem wurde die Rolle des Subkomplexes LBP100 innerhalb des FA-Kernkomplexes weiter aufgekl{\"a}rt. Beides tr{\"a}gt zu einem besseren Verst{\"a}ndnis des FA/BRCA-Signalweges bei. Ein weiterer Teil der vorliegenden Arbeit besch{\"a}ftigt sich mit der Charakterisierung von FAAP100138, einer bisher nicht validierten Isoform von FAAP100. Durch dieses Protein konnte der zellul{\"a}re FA-Ph{\"a}notyp von FAAP100-defizienten Zelllinien nicht komplementiert werden, jedoch wurden Hinweise auf einen dominant-negativen Effekt von FAAP100138 auf den FA/BRCA-Signalweg gefunden. Dies k{\"o}nnte zu der Erkl{\"a}rung beitragen, warum und wie der Signalweg, beispielsweise in bestimmtem Gewebearten, herunterreguliert wird. Zudem w{\"a}re eine Verwendung in der Krebstherapie denkbar.}, subject = {Fanconi-An{\"a}mie}, language = {de} } @article{FlemmingHankirKusanetal.2021, author = {Flemming, Sven and Hankir, Mohammed K. and Kusan, Simon and Krone, Manuel and Anger, Friedrich and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Safety of elective abdominal and vascular surgery during the COVID-19 pandemic: a retrospective single-center study}, series = {European Journal of Medical Research}, volume = {26}, journal = {European Journal of Medical Research}, doi = {10.1186/s40001-021-00583-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264975}, year = {2021}, abstract = {Background Patients with coronavirus disease 2019 (COVID-19) who undergo surgery have impaired postoperative outcomes and increased mortality. Consequently, elective and semi-urgent operations on the increasing number of patients severely affected by COVID-19 have been indefinitely postponed.in many countries with unclear implications on disease progression and overall survival. The purpose of this study was to evaluate whether the establishment of a standardized screening program for acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sufficient to ensure high-quality medical and surgical treatment of COVID-19 and non-COVID-19 patients while minimizing in-hospital SARS-CoV-2 transmission. Methods The screening program comprised polymerase chain reaction (PCR) testing of nasopharyngeal swabs and a standardized questionnaire about potential symptoms for SARS-CoV-2 infection. All elective and emergency patients admitted to the surgical department of a tertiary-care hospital center in Lower Franconia, Germany, between March and May 2020 were included and their characteristics were recorded. Results Out of the study population (n = 657), 509 patients (77.5\%) had at least one risk factor for a potentially severe course of COVID-19 and 164 patients (25\%) were active smokers. The average 7-day incidence in Lower Franconia was 24.0/100,000 during the observation period. Preoperative PCR testing revealed four asymptomatic positive patients out of the 657 tested patients. No postoperative SARS-CoV-2 infection or transmission could be detected. Conclusion The implementation of a standardized preoperative screening program to both COVID-19 and non-COVID-19 patients can ensure high-quality surgical care while minimizing infection risk for healthcare workers and potential in-hospital transmission.}, language = {en} } @article{ZieglerRadtkeVitaleetal.2021, author = {Ziegler, Georg C. and Radtke, Franziska and Vitale, Maria Rosaria and Preuße, Andr{\´e} and Klopocki, Eva and Herms, Stefan and Lesch, Klaus-Peter}, title = {Generation of multiple human iPSC lines from peripheral blood mononuclear cells of two SLC2A3 deletion and two SLC2A3 duplication carriers}, series = {Stem Cell Research}, volume = {56}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102526}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264696}, year = {2021}, abstract = {Copy number variants of SLC2A3, which encodes the glucose transporter GLUT3, are associated with several neuropsychiatric and cardiac diseases. Here, we report the successful reprogramming of peripheral blood mononuclear cells from two SLC2A3 duplication and two SLC2A3 deletion carriers and subsequent generation of two transgene-free iPSC clones per donor by Sendai viral transduction. All eight clones represent bona fide hiPSCs with high expression of pluripotency genes, ability to differentiate into cells of all three germ layers and normal karyotype. The generated cell lines will be helpful to enlighten the role of glucometabolic alterations in pathophysiological processes shared across organ boundaries.}, language = {en} } @article{LorenzKressZaumetal.2021, author = {Lorenz, Delia and Kress, Wolfram and Zaum, Ann-Kathrin and Speer, Christian P. and Hebestreit, Helge}, title = {Report of two siblings with spondylodysplastic Ehlers-Danlos syndrome and B4GALT7 deficiency}, series = {BMC Pediatrics}, volume = {21}, journal = {BMC Pediatrics}, doi = {10.1186/s12887-021-02767-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261084}, year = {2021}, abstract = {Background The spondylodysplastic Ehlers-Danlos subtype (OMIM \#130070) is a rare connective tissue disorder characterized by a combination of connective tissue symptoms, skeletal features and short stature. It is caused by variants in genes encoding for enzymes involved in the proteoglycan biosynthesis or for a zinc transporter. Presentation of cases We report two brothers with a similar phenotype of short stature, joint hypermobility, distinct craniofacial features, developmental delay and severe hypermetropia indicative for a spondylodysplastic Ehlers-Danlos subtype. One also suffered from a recurrent pneumothorax. Gene panel analysis identified two compound heterozygous variants in the B4GALT7 gene: c.641G > A and c.723 + 4A > G. B4GALT7 encodes for galactosyltransferase I, which is required for the initiation of glycosaminoglycan side chain synthesis of proteoglycans. Conclusions This is a first full report on two cases with spondylodysplastic Ehlers-Danlos syndrome and the c.723 + 4A > G variant of B4GALT7. The recurrent pneumothoraces observed in one case expand the variable phenotype of the syndrome.}, language = {en} } @article{VitaleZoellerJanschetal.2021, author = {Vitale, Maria Rosaria and Z{\"o}ller, Johanna Eva Maria and Jansch, Charline and Janz, Anna and Edenhofer, Frank and Klopocki, Eva and van den Hove, Daniel and Vanmierlo, Tim and Rivero, Olga and Kasri, Nael Nadif and Ziegler, Georg Christoph and Lesch, Klaus-Peter}, title = {Generation of induced pluripotent stem cell (iPSC) lines carrying a heterozygous (UKWMPi002-A-1) and null mutant knockout (UKWMPi002-A-2) of Cadherin 13 associated with neurodevelopmental disorders using CRISPR/Cas9}, series = {Stem Cell Research}, volume = {51}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102169}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260331}, year = {2021}, abstract = {Fibroblasts isolated from a skin biopsy of a healthy 46-year-old female were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate isogenic cell lines with a gene dose-dependent deficiency of CDH13, a risk gene associated with neurodevelopmental and psychiatric disorders. Thereby, a heterozygous CDH13 knockout (CDH13\(^{+/-}\)) and a CDH13 null mutant (CDH13\(^{-/-}\)) iPSC line was obtained. All three lines showed expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal female karyotype.}, language = {en} } @article{JanzZinkCirnuetal.2021, author = {Janz, Anna and Zink, Miriam and Cirnu, Alexandra and Hartleb, Annika and Albrecht, Christina and Rost, Simone and Klopocki, Eva and G{\"u}nther, Katharina and Edenhofer, Frank and Erg{\"u}n, S{\"u}leyman and Gerull, Brenda}, title = {CRISPR/Cas9-edited PKP2 knock-out (JMUi001-A-2) and DSG2 knock-out (JMUi001-A-3) iPSC lines as an isogenic human model system for arrhythmogenic cardiomyopathy (ACM)}, series = {Stem Cell Research}, volume = {53}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259846}, pages = {102256}, year = {2021}, abstract = {Arrhythmogenic cardiomyopathy (ACM) is characterized by fibro-fatty replacement of the myocardium, heart failure and life-threatening ventricular arrhythmias. Causal mutations were identified in genes encoding for proteins of the desmosomes, predominantly plakophilin-2 (PKP2) and desmoglein-2 (DSG2). We generated gene-edited knock-out iPSC lines for PKP2 (JMUi001-A-2) and DSG2 (JMUi001-A-3) using the CRISPR/Cas9 system in a healthy control iPSC background (JMUi001A). Stem cell-like morphology, robust expression of pluripotency markers, embryoid body formation and normal karyotypes confirmed the generation of high quality iPSCs to provide a novel isogenic human in vitro model system mimicking ACM when differentiated into cardiomyocytes.}, language = {en} } @article{FockenSteinemannSkawranetal.2011, author = {Focken, T. and Steinemann, D. and Skawran, B. and Hofmann, W. and Ahrens, P. and Arnold, N. and Kroll, P. and Kreipe, H. and Schlegelberger, B. and Gadzicki, D.}, title = {Human BRCA1-associated breast cancer: No increase in numerical chromosomal instability compared to sporadic tumors}, series = {Cytogenetic and Genome Research}, volume = {135}, journal = {Cytogenetic and Genome Research}, number = {2}, issn = {1424-8581}, doi = {10.1159/000332005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196770}, pages = {84 -- 92}, year = {2011}, abstract = {BRCA1 is a major gatekeeper of genomic stability. Acting in multiple central processes like double-strand break repair, centrosome replication, and checkpoint control, BRCA1 participates in maintaining genomic integrity and protects the cell against genomic instability. Chromosomal instability (CIN) as part of genomic instability is an inherent characteristic of most solid tumors and is also involved in breast cancer development. In this study, we determined the extent of CIN in 32 breast cancer tumors of women with a BRCA1 germline mutation compared to 62 unselected breast cancers. We applied fluorescence in situ hybridization (FISH) with centromere-specific probes for the chromosomes 1, 7, 8, 10, 17, and X and locus-specific probes for 3q27 (BCL6), 5p15.2 (D5S23), 5q31 (EGR1), 10q23.3 (PTEN), and 14q32 (IGH@) on formalin-fixed paraffin-embedded tissue microarray sections. Our hypothesis of an increased level of CIN in BRCA1-associated breast cancer could not be confirmed by this approach. Surprisingly, we detected no significant difference in the extent of CIN in BRCA1-mutated versus sporadic tumors. The only exception was the CIN value for chromosome 1. Here, the extent of CIN was slightly higher in the group of sporadic tumors.}, language = {en} } @article{GraserLiedtkeJakob2021, author = {Graser, Stephanie and Liedtke, Daniel and Jakob, Franz}, title = {TNAP as a new player in chronic inflammatory conditions and metabolism}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms22020919}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258888}, year = {2021}, abstract = {This review summarizes important information on the ectoenzyme tissue-nonspecific alkaline phosphatase (TNAP) and gives a brief insight into the symptoms, diagnostics, and treatment of the rare disease Hypophosphatasia (HPP), which is resulting from mutations in the TNAP encoding ALPL gene. We emphasize the role of TNAP beyond its well-known contribution to mineralization processes. Therefore, above all, the impact of the enzyme on central molecular processes in the nervous system and on inflammation is presented here.}, language = {en} } @phdthesis{Scholl2021, author = {Scholl, Eva Elena}, title = {Untersuchungen zur Informationsweitergabe in Familien mit erblichem Brust- und Eierstockkrebs}, doi = {10.25972/OPUS-24325}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243253}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {F{\"u}r die hier beschriebene Studie wurde ein Fragebogen erstellt, welcher von 80 Tr{\"a}gerinnen und Tr{\"a}gern einer pathogenen Mutation in den Genen BRCA1 oder BRCA2 ausgef{\"u}llt wurde. Die Befragung sollte untersuchen, ob den Befragten das Risiko ihrer Verwandten, ebenso Mutationstr{\"a}ger zu sein, bewusst war. Weiterhin sollte ermittelt werden, ob sie die jeweiligen Risikopersonen dar{\"u}ber informierten. Es zeigte sich, dass den meisten Befragten dieses Risiko bekannt war. Einigen Personen schienen jedoch nicht genau zu wissen, welche Verwandten als „Risikopersonen" z{\"a}hlen. Insbesondere war nicht allen Befragten die M{\"o}glichkeit bewusst, dass auch M{\"a}nner die Mutation tragen und an ihre Kinder weitergeben sowie selbst an Brustkrebs erkranken k{\"o}nnen. Weiterhin gaben mehr als ein Viertel der Befragten an, dass sie mindestens ein Familienmitglied, obwohl es ihnen als Risikoperson bekannt war, nicht informierten. Als h{\"a}ufigste Grund hierf{\"u}r wurde mangelnder Kontakt genannt. Vor dem Hintergrund der Angaben der Befragten sowie der aktuellen Forschungslage werden in der vorliegenden Arbeit M{\"o}glichkeiten diskutiert, wie die Anzahl der informierten Angeh{\"o}rigen verbessert werden k{\"o}nnte.}, subject = {Brustkrebs}, language = {de} } @article{LamatschTrifonovSchoriesetal.2011, author = {Lamatsch, D. K. and Trifonov, V. and Schories, S. and Epplen, J. T. and Schmid, M. and Schartl, M.}, title = {Isolation of a Cancer-Associated Microchromosome in the Sperm-Dependent Parthenogen Poecilia formosa}, series = {Cytogenetic and Genome Research}, volume = {135}, journal = {Cytogenetic and Genome Research}, number = {2}, issn = {1424-8581}, doi = {10.1159/000331271}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196785}, pages = {135-142}, year = {2011}, abstract = {In the asexual all-female fish species Poecilia formosa, the Amazon molly, supernumerary chromosomes have frequently been found in both laboratory-reared and wild-caught individuals. While wild-caught individuals with B chromosomes are phenotypically indifferent from conspecifics, individuals carrying B chromosomes from recent introgression events in the laboratory show phenotypic changes. Former analyses showed that the expression of a pigment cell locus is associated with the presence of these B chromosomes. In addition, they contain a so far unidentified locus that confers a higher susceptibility to tumor formation in the presence of pigmentation pattern. Isolation by microdissection and hybridization to metaphase chromosomes revealed that they contain one or several sequences with similarity to a highly repetitive pericentromeric and subtelomeric sequence in A chromosomes. Isolation of one particular sequence by AFLP showed that the B chromosomes contain at least 1 copy of an A-chromosomal region which is highly conserved in the whole genus Poecilia, i.e. more than 5 million years old. We propose it to be a single copy sequence.}, language = {en} } @article{HeinrichNandaRehnetal.2013, author = {Heinrich, T. and Nanda, I. and Rehn, M. and Zollner, U. and Frieauff, E. and Wirbelauer, J. and Grimm, T. and Schmid, M.}, title = {Live-Born Trisomy 22: Patient Report and Review}, series = {Molecular Syndromology}, volume = {3}, journal = {Molecular Syndromology}, number = {6}, issn = {1661-8769}, doi = {10.1159/000346189}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196535}, pages = {262-269}, year = {2013}, abstract = {Trisomy 22 is a common trisomy in spontaneous abortions. In contrast, live-born trisomy 22 is rarely seen due to severe organ malformations associated with this condition. Here, we report on a male infant with complete, non-mosaic trisomy 22 born at 35 + 5 weeks via caesarean section. Peripheral blood lymphocytes and fibroblasts showed an additional chromosome 22 in all metaphases analyzed (47,XY,+22). In addition, array CGH confirmed complete trisomy 22. The patient's clinical features included dolichocephalus, hypertelorism, flattened nasal bridge, dysplastic ears with preauricular sinuses and tags, medial cleft palate, anal atresia, and coronary hypospadias with scrotum bipartitum. Essential treatment was implemented in close coordination with the parents. The child died 29 days after birth due to respiratory insufficiency and deterioration of renal function. Our patient's history complements other reports illustrating that children with complete trisomy 22 may survive until birth and beyond.}, language = {en} } @article{CamachoSchmidCabrero2011, author = {Camacho, J.P.M. and Schmid, M. and Cabrero, J.}, title = {B Chromosomes and Sex in Animals}, series = {Sexual Development}, volume = {5}, journal = {Sexual Development}, number = {3}, issn = {1661-5425}, doi = {10.1159/000324930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196321}, pages = {155-166}, year = {2011}, abstract = {Supernumerary (B) chromosomes are dispensable elements found in many eukaryote genomes in addition to standard (A) chromosomes. In many respects, B chromosomes resemble sex chromosomes, so that a common ancestry for them has frequently been suggested. For instance, B chromosomes in grasshoppers, and other insects, show a pycnotic cycle of condensation-decondensation during meiosis remarkably similar to that of the X chromosome. In some cases, B chromosome size is even very similar to that of the X chromosome. These resemblances have led to suggest the X as the B ancestor in many cases. In addition, sex chromosome origin from B chromosomes has also been suggested. In this article, we review the existing evidence for both evolutionary pathways, as well as sex differences for B frequency at adult and embryo progeny levels, B chromosome effects or B chromosome transmission. In addition, we review cases found in the literature showing sex-ratio distortion associated with B chromosome presence, the most extreme case being the paternal sex ratio (PSR) chromosomes in some Hymenoptera. We finally analyse the possibility of B chromosome regularisation within the host genome and, as a consequence of it, whether B chromosomes can become regular members of the host genome.}, language = {en} } @article{MatsudaUnoKondoetal.2015, author = {Matsuda, Yoichi and Uno, Yoshinobu and Kondo, Mariko and Gilchrist, Michael J. and Zorn, Aaron M. and Rokhsar, Daniel S. and Schmid, Michael and Taira, Masanori}, title = {A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis}, series = {Cytogenetic and Genome Research}, volume = {145}, journal = {Cytogenetic and Genome Research}, number = {3-4}, issn = {1424-8581}, doi = {10.1159/000381292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196748}, pages = {187-191}, year = {2015}, abstract = {Xenopus laevis (XLA) is an allotetraploid species which appears to have undergone whole-genome duplication after the interspecific hybridization of 2 diploid species closely related to Silurana/Xenopus tropicalis (XTR). Previous cDNA fluorescence in situ hybridization (FISH) experiments have identified 9 sets of homoeologous chromosomes in X. laevis, in which 8 sets correspond to chromosomes 1-8 of X. tropicalis (XTR1-XTR8), and the last set corresponds to a fusion of XTR9 and XTR10. In addition, recent X. laevis genome sequencing and BAC-FISH experiments support this physiological relationship and show no gross chromosome translocation in the X. laevis karyotype. Therefore, for the benefit of both comparative cytogenetics and genome research, we here propose a new chromosome nomenclature for X. laevis based on the phylogenetic relationship and chromosome length, i.e. XLA1L, XLA1S, XLA2L, XLA2S, and so on, in which the numbering of XLA chromosomes corresponds to that in X. tropicalis and the postfixes 'L' and 'S' stand for 'long' and 'short' chromosomes in the homoeologous pairs, which can be distinguished cytologically by their relative size. The last chromosome set is named XLA9L and XLA9S, in which XLA9 corresponds to both XTR9 and XTR10, and hence, to emphasize the phylogenetic relationship to X. tropicalis, XLA9_10L and XLA9_10S are also used as synonyms.}, language = {en} } @article{SchmidSteinleinLombetal.2016, author = {Schmid, Michael and Steinlein, Claus and Lomb, Christian and Sperling, Karl and Neitzel, Heidemarie}, title = {5-Methylcytosine-Rich Heterochromatin in the Indian Muntjac}, series = {Cytogenetic and Genome Research}, volume = {147}, journal = {Cytogenetic and Genome Research}, number = {4}, issn = {1424-8581}, doi = {10.1159/000444431}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196701}, pages = {240-246}, year = {2016}, abstract = {Two 5-methylcytosine (5-MeC)-rich heterochromatic regions were demonstrated in metaphase chromosomes of the Indian muntjac by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. The metaphases were obtained from diploid and triploid cell lines. A major region is located in the 'neck' of the 3;X fusion chromosome and can be detected after denaturation of the chromosomal DNA with UV-light irradiation for 1 h. It is located exactly at the border of the X chromosome and the translocated autosome 3. A minor region is found in the centromeric region of the free autosome 3 after denaturing the chromosomal DNA for 3 h or longer. The structure and possible function of the major hypermethylated region as barrier against spreading of the X-inactivation process into the autosome 3 is discussed.}, language = {en} } @article{SchmidSteinleinWinking2016, author = {Schmid, Michael and Steinlein, Claus and Winking, Heinz}, title = {Multicolor Spectral Analyses of Mitotic and Meiotic Mouse Chromosomes Involved in Multiple Robertsonian Translocations. I. The CD/Cremona Hybrid Strain}, series = {Cytogenetic and Genome Research}, volume = {147}, journal = {Cytogenetic and Genome Research}, number = {4}, issn = {1424-8581}, doi = {10.1159/000444597}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199013}, pages = {253-259}, year = {2016}, abstract = {Multicolor spectral analysis (spectral karyotyping) was applied to mitotic and male diakinetic chromosomes of hybrid mice carrying a unique system of 18 autosomal Robertsonian translocation chromosomes with alternating arm homologies. Only the autosomes 19 and the XY sex chromosomes are excluded from these Robertsonian translocations. The translocations, previously identified by conventional banding analyses, could be verified by spectral karyotyping. Besides the Robertsonian translocations, no other interchromosomal rearrangements were detected. In diakineses of male meiosis, the 18 metacentric Robertsonian translocation chromosomes form a very large meiotic 'superring'. The predictable, specific order of the chromosomes along this 'superring' was completely confirmed by multicolor spectral analysis. In the majority of diakineses analyzed, the free autosomal bivalent 19 and the XY sex bivalent form a conspicuous complex which tightly associates with the 12;14 Robertsonian translocation chromosome in the 'superring'.}, language = {en} } @article{SchmidEvansBogart2015, author = {Schmid, Michael and Evans, Ben J. and Bogart, James P.}, title = {Polyploidy in Amphibia}, series = {Cytogenetic and Genome Research}, volume = {145}, journal = {Cytogenetic and Genome Research}, number = {3-4}, issn = {1424-8581}, doi = {10.1159/000431388}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196730}, pages = {315-330}, year = {2015}, abstract = {This review summarizes the current status of the known extant genuine polyploid anuran and urodelan species, as well as spontaneously originated and/or experimentally produced amphibian polyploids. The mechanisms by which polyploids can originate, the meiotic pairing configurations, the diploidization processes operating in polyploid genomes, the phenomenon of hybridogenesis, and the relationship between polyploidization and sex chromosome evolution are discussed. The polyploid systems in some important amphibian taxa are described in more detail.}, language = {en} } @article{SchmidSteinleinYanoetal.2016, author = {Schmid, Michael and Steinlein, Claus and Yano, Cassia F. and Cioffi, Marcelo B.}, title = {Hypermethylated Chromosome Regions in Nine Fish Species with Heteromorphic Sex Chromosomes}, series = {Cytogenetic and Genome Research}, volume = {147}, journal = {Cytogenetic and Genome Research}, number = {2-3}, issn = {1424-8581}, doi = {10.1159/000444067}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196710}, pages = {169-178}, year = {2016}, abstract = {Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes.}, language = {en} } @article{SchmidSteinlein2016, author = {Schmid, Michael and Steinlein, Claus}, title = {Chromosome Banding in Amphibia. XXXIII. Demonstration of 5-Methylcytosine-Rich Heterochromatin in Anura}, series = {Cytogenetic and Genome Research}, volume = {148}, journal = {Cytogenetic and Genome Research}, number = {1}, issn = {1424-8581}, doi = {10.1159/000446141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199022}, pages = {35-43}, year = {2016}, abstract = {An experimental approach using monoclonal anti-5-methylcytosine (5-MeC) antibodies and indirect immunofluorescence was elaborated for detecting 5-MeC-rich chromosome regions in anuran chromosomes. This technique was applied to mitotic metaphases of 6 neotropical frog species belonging to 6 genera and 4 families. The hypermethylation patterns were compared with a variety of banding patterns obtained by conventional banding techniques. The hypermethylated DNA sequences are species-specific and located exclusively in constitutive heterochromatin. They are found in centromeric, pericentromeric, telomeric, and interstitial positions of the chromosomes and adjacent to nucleolus organizer regions. 5-MeC-rich DNA sequences can be embedded both in AT- and GC-rich repetitive DNA. The experimental parameters that have major influence on the reproducibility and quality of the anti-5-MeC antibody labeling are discussed.}, language = {en} } @article{SchmidSteinleinFeichtingeretal.2014, author = {Schmid, Michael and Steinlein, Claus and Feichtinger, Wolfgang and Bogart, James P.}, title = {Chromosome Banding in Amphibia. XXXI. The Neotropical Anuran Families Centrolenidae and Allophrynidae}, series = {Cytogenetic and Genome Research}, volume = {142}, journal = {Cytogenetic and Genome Research}, number = {4}, issn = {1424-8581}, doi = {10.1159/000362216}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196763}, pages = {268-285}, year = {2014}, abstract = {The mitotic chromosomes of 11 species from the anuran families Centrolenidae and Allophrynidae were analyzed by means of conventional staining, banding techniques, and in situ hybridization. The amount, location, and fluorochrome affinities of constitutive heterochromatin, the number and positions of nucleolus organizer regions, and the patterns of telomeric DNA sequences were determined for most of the species. The karyotypes were found to be highly conserved with a low diploid chromosome number of 2n = 20 and morphologically similar chromosomes. The sister group relationship between the Centrolenidae and Allophrynidae (unranked taxon Allocentroleniae) is clearly corroborated by the cytogenetic data. The existence of heteromorphic XY♂/XX♀ sex chromosomes in an initial stage of morphological differentiation was confirmed in Vitreorana antisthenesi. The genome sizes of 4 centrolenid species were determined using flow cytometry. For completeness and for comparative purposes, all previously published cytogenetic data on centrolenids are included.}, language = {en} } @article{SchmidSteinlein2015, author = {Schmid, Michael and Steinlein, Claus}, title = {Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae)}, series = {Cytogenetic and Genome Research}, volume = {145}, journal = {Cytogenetic and Genome Research}, number = {3-4}, issn = {1424-8581}, doi = {10.1159/000433481}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196727}, pages = {201-217}, year = {2015}, abstract = {Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.}, language = {en} } @article{SchmidSteinlein2016, author = {Schmid, Michael and Steinlein, Claus}, title = {Chromosome Banding in Amphibia. XXXIV. Intrachromosomal Telomeric DNA Sequences in Anura}, series = {Cytogenetic and Genome Research}, volume = {148}, journal = {Cytogenetic and Genome Research}, number = {2-3}, issn = {1424-8581}, doi = {10.1159/000446298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196693}, pages = {211-226}, year = {2016}, abstract = {The mitotic chromosomes of 4 anuran species were examined by various classical banding techniques and by fluorescence in situ hybridization using a (TTAGGG)\(_n\) repeat. Large intrachromosomal telomeric sequences (ITSs) were demonstrated in differing numbers and chromosome locations. A detailed comparison of the present results with numerous published and unpublished data allowed a consistent classification of the various categories of large ITSs present in the genomes of anurans and other vertebrates. The classification takes into consideration the total numbers of large ITSs in the karyotypes, their chromosomal locations and their specific distribution patterns. A new category of large ITSs was recognized to exist in anuran species. It consists of large clusters of ITSs located in euchromatic chromosome segments, which is in clear contrast to the large ITSs in heterochromatic chromosome regions known in vertebrates. The origin of the different categories of large ITSs in heterochromatic and euchromatic chromosome regions, their mode of distribution in the karyotypes and evolutionary fixation in the genomes, as well as their cytological detection are discussed.}, language = {en} } @article{HansmannHeinzmannWrenzyckietal.2010, author = {Hansmann, T. and Heinzmann, J. and Wrenzycki, C. and Zechner, U. and Niemann, H. and Haaf, T.}, title = {Characterization of Differentially Methylated Regions in 3 Bovine Imprinted Genes: A Model for Studying Human Germ-Cell and Embryo Development}, series = {Cytogenetic and Genome Research}, volume = {132}, journal = {Cytogenetic and Genome Research}, number = {4}, issn = {1424-8581}, doi = {10.1159/000322627}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199051}, pages = {239-247}, year = {2010}, abstract = {Correct imprinting is crucial for normal fetal and placental development in mammals. Experimental evidence in animal models and epidemiological studies in humans suggest that assisted reproductive technologies (ARTs) can interfere with imprinted gene regulation in gametogenesis and early embryogenesis. Bos taurus is an agriculturally important species in which ARTs are commonly employed. Because this species exhibits a similar preimplantation development and gestation length as humans, it is increasingly being used as a model for human germ-cell and embryo development. However, in contrast to humans and mice, there is relatively little information on bovine imprinted genes. Here, we characterized the bovine intergenic IGF2-H19 imprinting control region (ICR) spanning approximately 3 kb. We identified a 300-bp differentially methylated region (DMR) approximately 6 kb upstream of the H19 promoter, containing a CpG island with CTCF-binding site and high sequence similarity with the human intergenic ICR. Additional differentially methylated CpG islands lie -6 kb to -3 kb upstream of the promoter, however these are less conserved. Both classical bisulfite sequencing and bisulfite pyrosequencing demonstrated complete methylation of the IGF2-H19 ICR in sperm, complete demethylation in parthenogenetic embryos having only the female genome, and differential methylation in placental and somatic tissues. In addition, we established pyrosequencing assays for the previously reported bovine SNRPN and PEG3 DMRs. The observed methylation patterns were consistent with genomic imprinting in all analyzed tissues/cell types. The identified IGF2-H19 ICR and the developed quantitative methylation assays may prove useful for further studies on the relationship between ARTs and imprinting defects in the bovine model.}, language = {en} } @article{SchmidSteinleinFeichtingeretal.2014, author = {Schmid, Michael and Steinlein, Claus and Feichtinger, Wolfgang and Haaf, Thomas and Mijares-Urrutia, Abraham and Schargel, Walter E. and Hedges, S. Blair}, title = {Cytogenetic Studies on Gonatodes (Reptilia, Squamata, Sphaerodactylidae)}, series = {Cytogenetic and Genome Research}, volume = {144}, journal = {Cytogenetic and Genome Research}, number = {1}, issn = {1424-8581}, doi = {10.1159/000367929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196753}, pages = {47-61}, year = {2014}, abstract = {Mitotic and meiotic chromosomes of 5 species of the reptile genus Gonatodes are described by means of conventional staining, banding analyses and in situ hybridization using a synthetic telomeric DNA probe. The amount, location and fluorochrome affinities of constitutive heterochromatin, the number and positions of nucleolus organizer regions, and the patterns of telomeric DNA sequences were determined for most of the species. The karyotypes of G. falconensis and G. taniae from northern Venezuela are distinguished by their extraordinarily reduced diploid chromosome number of 2n = 16, which is the lowest value found so far in reptiles. In contrast to most other reptiles, both species have exclusively large biarmed (meta- and submetacentric) chromosomes. Comparison of the karyotypes of G. falconensis and G. taniae with those of other Gonatodes species indicates that the exceptional 2n = 16 karyotype originated by a series of 8 centric fusions. The karyotypes of G. falconensis and G. taniae are further characterized by the presence of considerable amounts of (TTAGGG)n telomeric sequences in the centromeric regions of all chromosomes. These are probably not only relics of the centric fusion events, but a component of the highly repetitive DNA in the constitutive heterochromatin of the chromosomes. The genome sizes of 4 Gonatodes species were determined using flow cytometry. For comparative purposes, all previously published cytogenetic data on Gonatodes and other sphaerodactylids are included and discussed.}, language = {en} }