@article{NicklEckGoedertetal.2023, author = {Nickl, Vera and Eck, Juliana and Goedert, Nicolas and H{\"u}bner, Julian and Nerreter, Thomas and Hagemann, Carsten and Ernestus, Ralf-Ingo and Schulz, Tim and Nickl, Robert Carl and Keßler, Almuth Friederike and L{\"o}hr, Mario and Rosenwald, Andreas and Breun, Maria and Monoranu, Camelia Maria}, title = {Characterization and optimization of the tumor microenvironment in patient-derived organotypic slices and organoid models of glioblastoma}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {10}, issn = {2072-6694}, doi = {10.3390/cancers15102698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319249}, year = {2023}, abstract = {While glioblastoma (GBM) is still challenging to treat, novel immunotherapeutic approaches have shown promising effects in preclinical settings. However, their clinical breakthrough is hampered by complex interactions of GBM with the tumor microenvironment (TME). Here, we present an analysis of TME composition in a patient-derived organoid model (PDO) as well as in organotypic slice cultures (OSC). To obtain a more realistic model for immunotherapeutic testing, we introduce an enhanced PDO model. We manufactured PDOs and OSCs from fresh tissue of GBM patients and analyzed the TME. Enhanced PDOs (ePDOs) were obtained via co-culture with PBMCs (peripheral blood mononuclear cells) and compared to normal PDOs (nPDOs) and PT (primary tissue). At first, we showed that TME was not sustained in PDOs after a short time of culture. In contrast, TME was largely maintained in OSCs. Unfortunately, OSCs can only be cultured for up to 9 days. Thus, we enhanced the TME in PDOs by co-culturing PDOs and PBMCs from healthy donors. These cellular TME patterns could be preserved until day 21. The ePDO approach could mirror the interaction of GBM, TME and immunotherapeutic agents and may consequently represent a realistic model for individual immunotherapeutic drug testing in the future.}, language = {en} } @article{Kretzschmar2020, author = {Kretzschmar, Kai}, title = {Cancer research using organoid technology}, series = {Journal of Molecular Medicine}, volume = {99}, journal = {Journal of Molecular Medicine}, issn = {0946-2716}, doi = {10.1007/s00109-020-01990-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235377}, pages = {501-515}, year = {2020}, abstract = {Organoid technology has rapidly transformed basic biomedical research and contributed to significant discoveries in the last decade. With the application of protocols to generate organoids from cancer tissue, organoid technology has opened up new opportunities for cancer research and therapy. Using organoid cultures derived from healthy tissues, different aspects of tumour initiation and progression are widely studied including the role of pathogens or specific cancer genes. Cancer organoid cultures, on the other hand, are applied to generate biobanks, perform drug screens, and study mutational signatures. With the incorporation of cellular components of the tumour microenvironment such as immune cells into the organoid cultures, the technology is now also exploited in the rapidly advancing field of immuno-oncology. In this review, I discuss how organoid technology is currently being utilised in cancer research and what obstacles are still to be overcome for its broader use in anti-cancer therapy.}, language = {en} }