@phdthesis{Mueller2012, author = {M{\"u}ller, Andreas}, title = {Towards functional oxide heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72478}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Oxide heterostructures attract a lot of attention as they display a vast range of physical phenomena like conductivity, magnetism, or even superconductivity. In most cases, these effects are caused by electron correlations and are therefore interesting for studying fundamental physics, but also in view of future applications. This thesis deals with the growth and characterization of several prototypical oxide heterostructures. Fe3O4 is highly ranked as a possible spin electrode in the field of spintronics. A suitable semiconductor for spin injection in combination with Fe3O4 is ZnO due to its oxide character and a sufficiently long spin coherence length. Fe3O4 has been grown successfully on ZnO using pulsed laser deposition and molecular beam epitaxy by choosing the oxygen partial pressure adequately. Here, a pressure variation during growth reduces an FeO-like interface layer. Fe3O4 films grow in an island-like growth mode and are structurally nearly fully relaxed, exhibiting the same lattice constants as the bulk materials. Despite the presence of a slight oxygen off-stoichiometry, indications of the Verwey transition hint at high-quality film properties. The overall magnetization of the films is reduced compared to bulk Fe3O4 and a slow magnetization behavior is observed, most probably due to defects like anti-phase boundaries originating from the initial island growth. LaAlO3/SrTiO3 heterostructures exhibit a conducting interface above a critical film thickness, which is most likely explained by an electronic reconstruction. In the corresponding model, the potential built-up owing to the polar LaAlO3 overlayer is compensated by a charge transfer from the film surface to the interface. The properties of these heterostructures strongly depend on the growth parameters. It is shown for the first time, that it is mainly the total pressure which determines the macroscopic sample properties, while it is the oxygen partial pressure which controls the amount of charge carriers near the interface. Oxygen-vacancy-mediated conductivity is found for too low oxygen pressures. A too high total pressure, however, destroys interface conductivity, most probably due to a change of the growth kinetics. Post-oxidation leads to a metastable state removing the arbitrariness in controlling the electronic interface properties by the oxygen pressure during growth. LaVO3/SrTiO3 heterostructures exhibit similar behavior compared to LaAlO3/SrTiO3 when it comes to a thickness-dependent metal-insulator transition. But in contrast to LaAlO3, LaVO3 is a Mott insulator exhibiting strong electron correlations. Films have been grown by pulsed laser deposition. Layer-by-layer growth and a phase-pure pervoskite lattice structure is observed, indicating good structural quality of the film and the interface. An electron-rich layer is found near the interface on the LaVO3 side for conducting LaVO3/SrTiO3. This could be explained by an electronic reconstruction within the film. The electrostatic doping results in a band-filling-controlled metal-insulator transition without suffering from chemical impurities, which is unavoidable in conventional doping experiments.}, subject = {Oxide}, language = {en} } @phdthesis{Weigand2005, author = {Weigand, Wolfgang}, title = {Geometrische Struktur und Morphologie epitaktisch gewachsener ZnSe-Schichtsysteme}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Halbleiterbauelemente sind im t{\"a}glichen Leben allgegenw{\"a}rtig und haben in den letzten Jahrzehnten unseren Lebensstil vollkommen ver{\"a}ndert.W{\"a}hrend diemikro-elektronischen Bauelemente haupts{\"a}chlich auf Silizium-Technologie basieren, gewannen Anfang der 90-ziger Jahre Verbindungshalbleiter wie GaAs, GaN, CdHgTe oder ZnSe f{\"u}r opto-elektronische Bauelemente immer st{\"a}rkere Bedeutung. Besonders der II-VI Halbleiter ZnSe war wegen seiner großen Bandl{\"u}cke und seiner geringen Versetzungsdichte einer der gr{\"o}ßten Hoffnungstr{\"a}ger, blau emittierende Laserdioden zu realisieren. Wie sich sp{\"a}ter zeigte, weisen ZnSe-basierte blaue Laserdioden aber binnen kurzer Zeit eine ausgepr{\"a}gte Degradation ihrer opto-elektronisch aktiven Schicht auf [Guha97]. Dies f{\"u}hrte schließlich dazu, dass sich zur Produktion blau-gr{\"u}n emittierender Laserdioden das konkurrierende Halbleitermaterial GaN durchsetzte [Pearton99] und ZnSe in den Hintergrund gedr{\"a}ngt wurde. In j{\"u}ngster Zeit aber erlebt das ZnSe Halbleitermaterial in spintronischen Bauelementen eine Renaissance [Fiederling99], und auch in Kombination mit Mg und Fe konnten interessante magnetische Eigenschaften nachgewiesen werden [Marangolo01,Marangolo02]. ZurHerstellung der oben erw{\"a}hnten opto-elektronischen und spintronischen Schichtstrukturen wird haupts{\"a}chlich die Molekular-Strahl-Epitaxie (MBE) eingesetzt. Sie gew{\"a}hrleistet erstens eine geringe Defektdichte und einen hohen Reinheitsgrad der erzeugten Schichtstrukturen. Zweitens k{\"o}nnen die elektronischen Eigenschaften der so erzeugten Schichtstrukturen durchDotierung gezielt beeinflusstwerden. F{\"u}r das Wachstum der ZnSe-basierten Schichtsysteme ist zum einen die genutzte Substratfl{\"a}che entscheidend. Als m{\"o}gliche Substratkristalle bieten sich Halbleitermaterialien wie GaAs und Germanium an, die gegen{\"u}ber dem ZnSe-Kristall eine sehr kleine Gitterfehlanpassung aufweisen (< 0.3 \%). Zum anderen nimmt die ZnSe Oberfl{\"a}che eine wichtige Rolle ein, weil an ihr das Wachstum abl{\"a}uft und ihre mikroskopischen Eigenschaften direkt das Wachstum beeinflussen. Die genauen Mechanismen dieses Wachstumsprozesses sind bis jetzt nur in Ans{\"a}tzen verstanden (siehe z.B. [Pimpinelli99,Herman97]), weshalb die Wachstumsoptimierung meist auf empirischem Weg erfolgt. Aus diesem Grund besteht ein gesteigertes akademisches Interesse an der Aufkl{\"a}rung der mikroskopischen Eigenschaften der Halbleiteroberfl{\"a}chen. F{\"u}r die Oberfl{\"a}chen von CdTe- und GaAs-Kristallen wurden diesbez{\"u}glich bereits zahlreicheUntersuchungen durchgef{\"u}hrt, die die geometrische und elektronische Struktur und dieMorphologie dieser Oberfl{\"a}chen analysieren.MitHilfe von experimentellen Methoden wie Rastertunnel-Mikroskopie (STM), Photoelektronen-Spektroskopie (PES, ARUPS) und verschiedenen Beugungsmethoden (SXRD,HRXRD und LEED) bzw. theoretischen Berechnungen (DFT) wurde das Verhalten dieser Oberfl{\"a}chen untersucht. Ihren Eigenschaften wird Modell-Charakter zugewiesen, der oft auf andere II-VI und III-V Halbleiteroberfl{\"a}chen angewendet wird. {\"U}berraschenderweise ist das Verhalten der ZnSe Oberfl{\"a}che, obwohl sie so lange im Mittelpunkt der Forschung um den blauen Laser stand, weit weniger gut verstanden. Unter anderemexistieren f{\"u}r die geometrische Struktur der c(2×2)-rekonstruierten ZnSe(001)Wachstumsoberfl{\"a}che zwei konkurrierende Strukturmodelle, die sich widersprechen. Ziel der nachfolgenden Abhandlung ist es, zuerst die geometrische Struktur und die Morphologie der verschieden rekonstruierten ZnSe(001) Oberfl{\"a}chen zu untersuchen und mit dem Verhalten anderer II-VI Oberfl{\"a}chen zu vergleichen. Dadurch soll festgestellt werden, welche Eigenschaften der II-VI Halbleiteroberfl{\"a}chen Modell-Charakter besitzen, also {\"u}bertragbar auf andere II-VI Halbleiteroberfl{\"a}chen sind, und welche der Oberfl{\"a}chen-Eigenschaften materialspezifisch sind (siehe Tab. 5.1). Zweitens wird die geometrische Struktur und dieMorphologie der Te-passivierten Ge(001) Oberfl{\"a}che untersucht. Diese Oberfl{\"a}che ist wegen ihrer geringen Gitterfehlanpassung bzgl. des ZnSe Kristalls eine erfolgversprechende Substratoberfl{\"a}che, um das ZnSe-Wachstum auch auf nicht-polaren Halbleiteroberfl{\"a}chen zu etablieren. Zur Untersuchung der geometrischen Struktur bzw. Morphologie der Halbleiteroberfl{\"a}chen wurden die zwei komplement{\"a}ren Methoden SXRD und SPA-LEED eingesetzt. Die oberfl{\"a}chenempfindliche R{\"o}ntgenbeugung (SXRD) erm{\"o}glicht es, die geometrische Struktur, also den genauen atomaren Aufbau der Oberfl{\"a}che, aufzukl{\"a}ren. Die hochaufl{\"o}sende niederenergetische Elektronenbeugung (SPA-LEED) hingegen liefert Informationen {\"u}ber die Morphologie, also die Gestalt der Oberfl{\"a}che auf mesoskopischer Gr{\"o}ßenskala. Diese Untersuchungen werden durch hochaufl{\"o}sende klassische R{\"o}ntgenbeugung (HRXRD), Rasterkraft-Mikroskopie (AFM), hochaufl{\"o}sender Photoelektronen-Spektroskopie (PES, ARUPS) und Massen-Spektroskopie (QMS) erg{\"a}nzt. Die vorliegende Arbeit gliedert sich in folgende drei Teile: Zuerst wird in die SXRD und SPA-LEED Methoden eingef{\"u}hrt, mit denen haupts{\"a}chlich gearbeitet wurde (Kapitel 2). Anschließend werden die experimentellen Untersuchungen an der Te/Ge(001) Oberfl{\"a}che und an den verschieden rekonstruierten ZnSe(001) Oberfl{\"a}chen vorgestellt (Kapitel 5 bis 8). Im dritten und letzten Teil werden schließlich die wichtigsten Ergebnisse und Schlussfolgerungen zusammengefasst (Kapitel 9).}, subject = {Zinkselenid}, language = {de} }