@article{HilmersFriessBaessleretal.2018, author = {Hilmers, Torben and Friess, Nicolas and B{\"a}ssler, Claus and Heurich, Marco and Brandl, Roland and Pretzsch, Hans and Seidl, Rupert and M{\"u}ller, J{\"o}rg}, title = {Biodiversity along temperate forest succession}, series = {Journal of Applied Ecology}, volume = {55}, journal = {Journal of Applied Ecology}, doi = {10.1111/1365-2664.13238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320632}, pages = {2756-2766}, year = {2018}, abstract = {1. The successional dynamics of forests—from canopy openings to regeneration, maturation, and decay—influence the amount and heterogeneity of resources available for forest-dwelling organisms. Conservation has largely focused only on selected stages of forest succession (e.g., late-seral stages). However, to develop comprehensive conservation strategies and to understand the impact of forest management on biodiversity, a quantitative understanding of how different trophic groups vary over the course of succession is needed. 2. We classified mixed mountain forests in Central Europe into nine successional stages using airborne LiDAR. We analysed α- and β-diversity of six trophic groups encompassing approximately 3,000 species from three kingdoms. We quantified the effect of successional stage on the number of species with and without controlling for species abundances and tested whether the data fit the more-individuals hypothesis or the habitat heterogeneity hypothesis. Furthermore, we analysed the similarity of assemblages along successional development. 3. The abundance of producers, first-order consumers, and saprotrophic species showed a U-shaped response to forest succession. The number of species of producer and consumer groups generally followed this U-shaped pattern. In contrast to our expectation, the number of saprotrophic species did not change along succession. When we controlled for the effect of abundance, the number of producer and saproxylic beetle species increased linearly with forest succession, whereas the U-shaped response of the number of consumer species persisted. The analysis of assemblages indicated a large contribution of succession-mediated β-diversity to regional γ-diversity. 4. Synthesis and applications. Depending on the species group, our data supported both the more-individuals hypothesis and the habitat heterogeneity hypothesis. Our results highlight the strong influence of forest succession on biodiversity and underline the importance of controlling for successional dynamics when assessing biodiversity change in response to external drivers such as climate change. The successional stages with highest diversity (early and late successional stages) are currently strongly underrepresented in the forests of Central Europe. We thus recommend that conservation strategies aim at a more balanced representation of all successional stages.}, language = {en} } @article{ThornChaoBernhardtRoemermannetal.2020, author = {Thorn, Simon and Chao, Anne and Bernhardt-R{\"o}mermann, Markus and Chen, Yan-Han and Georgiev, Kostadin B. and Heibl, Christoph and M{\"u}ller, J{\"o}rg and Sch{\"a}fer, Hanno and B{\"a}ssler, Claus}, title = {Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests}, series = {Ecology}, volume = {101}, journal = {Ecology}, number = {3}, doi = {10.1002/ecy.2949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212378}, pages = {e02949}, year = {2020}, abstract = {Following natural disturbances, additional anthropogenic disturbance may alter community recovery by affecting the occurrences of species, functional groups, and evolutionary lineages. However, our understanding of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, particularly across multiple taxa, is limited. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood-inhabiting fungi, saproxylic beetles, and birds in a storm-disturbed, experimentally salvage logged forest. Communities of all investigated species groups showed dissimilarities between logged and unlogged plots. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first seven years of succession, indicating a lack of community recovery. In general, the dissimilarities of communities were mainly driven by rare species. Convergence of dissimilarities occurred more often than divergence during the early stages of succession for rare species, indicating a major role in driving decreasing taxonomic dissimilarities between logged and unlogged plots over time. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. Nevertheless, common and dominant species contributed to a convergence of dissimilarities over time in the case of the functional dissimilarities of wood-inhabiting fungi. Our study shows that salvage logging following disturbances can alter successional trajectories in early stages of forest succession following natural disturbances. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities.}, language = {en} }