@article{GomezHFelipeMedinaSanchezMartinetal.2016, author = {Gom{\´e}z-H, Laura and Felipe-Medina, Natalia and S{\´a}nchez-Mart{\´i}n, Manuel and Davies, Owen R. and Ramos, Isabel and Garc{\´i}a-Tu{\~n}{\´o}n, Ignacio and de Rooij, Dirk G. and Dereli, Ihsan and T{\´o}th, Attila and Barbero, Jos{\´e} Luis and Benavente, Ricardo and Llano, Elena and Pendas, Alberto M.}, title = {C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165907}, pages = {13298}, year = {2016}, abstract = {Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a 'zipper'-like protein assembly that synapses homologue pairs together and provides the structural framework for processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation.}, language = {en} } @article{daCruzRodriguezCasuriagaSantinaqueetal.2016, author = {da Cruz, Irene and Rodr{\´i}guez-Casuriaga, Rosana and Santi{\~n}aque, Frederico F. and Far{\´i}as, Joaquina and Curti, Gianni and Capoano, Carlos A. and Folle, Gustavo A. and Benavente, Ricardo and Sotelo-Silveira, Jos{\´e} Roberto and Geisinger, Adriana}, title = {Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-016-2618-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164574}, pages = {294}, year = {2016}, abstract = {Background Spermatogenesis is a complex differentiation process that involves the successive and simultaneous execution of three different gene expression programs: mitotic proliferation of spermatogonia, meiosis, and spermiogenesis. Testicular cell heterogeneity has hindered its molecular analyses. Moreover, the characterization of short, poorly represented cell stages such as initial meiotic prophase ones (leptotene and zygotene) has remained elusive, despite their crucial importance for understanding the fundamentals of meiosis. Results We have developed a flow cytometry-based approach for obtaining highly pure stage-specific spermatogenic cell populations, including early meiotic prophase. Here we combined this methodology with next generation sequencing, which enabled the analysis of meiotic and postmeiotic gene expression signatures in mouse with unprecedented reliability. Interestingly, we found that a considerable number of genes involved in early as well as late meiotic processes are already on at early meiotic prophase, with a high proportion of them being expressed only for the short time lapse of lepto-zygotene stages. Besides, we observed a massive change in gene expression patterns during medium meiotic prophase (pachytene) when mostly genes related to spermiogenesis and sperm function are already turned on. This indicates that the transcriptional switch from meiosis to post-meiosis takes place very early, during meiotic prophase, thus disclosing a higher incidence of post-transcriptional regulation in spermatogenesis than previously reported. Moreover, we found that a good proportion of the differential gene expression in spermiogenesis corresponds to up-regulation of genes whose expression starts earlier, at pachytene stage; this includes transition protein-and protamine-coding genes, which have long been claimed to switch on during spermiogenesis. In addition, our results afford new insights concerning X chromosome meiotic inactivation and reactivation. Conclusions This work provides for the first time an overview of the time course for the massive onset and turning off of the meiotic and spermiogenic genetic programs. Importantly, our data represent a highly reliable information set about gene expression in pure testicular cell populations including early meiotic prophase, for further data mining towards the elucidation of the molecular bases of male reproduction in mammals.}, language = {en} } @phdthesis{Duraphe2010, author = {Duraphe, Prashant}, title = {Identification and characterization of AUM, a novel human tyrosine phosphatase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-44256}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Protein Phosphatasen werden aufgrund der Aminos{\"a}uresequenzen ihrer aktiven Zentren in drei große Familien unterteilt. In einer neu entdeckten Familie von Phosphatasen ist das aktive Zentrum durch die Sequenz DXDX(T/V) charakterisiert. Diese Aspartat-abh{\"a}ngigen Phosphatasen geh{\"o}ren zu der Superfamilie der Hydrolasen vom Haloazid Dehalogenase(HAD)-Typ, einer evolution{\"a}r konservierten und ubiquit{\"a}r verbreiteten Enzymfamilie. Bislang konnten 58 menschliche HAD Enzyme durch Datenbankanalysen identifiziert werden. Ihre Funktionen sind jedoch nach wie vor nur rudiment{\"a}r verstanden. Im Rahmen dieser Arbeit wurde zun{\"a}chst das Komplement aller menschlichen HAD Phosphatasen durch Datenbank-Recherchen erfasst. Zusammen mit phylogenetischen Analysen gelang es, eine zum damaligen Zeitpunkt unbekannte, putative Phosphatase zu identifizieren, die eine vergleichsweise hohe Sequenz-Homologie zu der Zytoskelettregulierenden HAD Phosphatase Chronophin aufweist. Dieses neuartige Enzym wurde kloniert und mit biochemischen und zellbiologischen Methoden charakterisiert. Auf der Basis dieser Befunde bezeichnen wir dieses neuartige Protein als AUM (actin remodeling, ubiquitously expressed, magnesium-dependent HAD phosphatase).Mittels Northern blot, real-time PCR und Western blot Analysen konnte gezeigt werden, dass AUM in allen untersuchten menschlichen und murinen Geweben exprimiert wird. Die h{\"o}chste Expression konnte in Hodengewebe nachgewiesen werden. Durch immunohistochemische Untersuchungen konnte gezeigt werden, dass AUM spezifisch in reifenden Keimzellen mit einem Expressionsmaximum zum Zeitpunkt der Spermiogenese exprimiert wird. Um die Substratpr{\"a}ferenz von AUM zu charakterisieren, wurde zun{\"a}chst ein peptidbasierter in vitro Phosphatase-Substrat-Screen durchgef{\"u}hrt. Hierbei wurden 720 aus menschlichen Phosphoproteinen abgeleitete Phosphopeptide untersucht. Interessanterweise dephosphorylierte AUM ausschließlich Phosphotyrosin (pTyr)-enthaltende Peptide. Nur 17 pTyr-Peptide (~2\% aller untersuchten Peptide) fungierten als AUM-Substrate. Diese Daten legen eine hohe Substratspezifit{\"a}t von AUM nahe. Zu den putativen AUM Substraten geh{\"o}ren Proteine, die in die Dynamik der Zytoskelett-Reorganisation sowie in Tyrosin Kinasevermittelte Signalwege eingebunden sind. In {\"U}bereinstimmung mit den Ergebnissen dieses Phosphopeptid-Screens konnte mittels Phosphatase overlay assays sowie in Zellextrakten aus Pervanadat-behandelten HeLa Zellen demonstriert werden, dass AUM eine begrenzte Anzahl Tyrosin-phosphorylierter Proteinen dephosphorylieren kann.In zellul{\"a}ren Untersuchungen wurde die m{\"o}gliche Rolle von AUM im Rahmen der durch den epidermalen Wachstumsfaktor (EGF) ausgel{\"o}sten Tyrosin-Phosphorylierung in einer Spermatogonien Zelllinie (GC-1 spg-Zellen) analysiert. So konnte nachgewiesen werden, dass die {\"U}berexpression von AUM zu einer moderaten Abnahme Tyrosin phosphorylierter Proteine nach EGF-Stimulation f{\"u}hrte. Im Gegensatz dazu l{\"o}ste jedoch die durch RNAInterferenz vermittelte Depletion von endogenem AUM einen robusten Anstieg Tyrosinphosphorylierter Proteine aus, zu denen auch der EGF-Rezeptor selbst z{\"a}hlt. Zus{\"a}tzlich zu dem EGF-Rezeptor wurde die Src-Kinase im Zuge des Phosphopeptid- Screens als m{\"o}gliches AUM Substrat identifiziert. Daher wurden in vitro Kinase/Phosphatase-Assays mit gereinigtem Src und AUM durchgef{\"u}hrt. Mit diesem Ansatz konnte erstmals gezeigt werden, dass AUM in der Lage ist, die Src-Kinase zu aktivieren, w{\"a}hrend Src AUM phosphoryliert und die AUM Phosphatase-Aktivit{\"a}t blockiert. Diese Ergebnisse deuten auf eine gekoppelte, wechselseitige Regulation von AUM und Src hin. Obwohl die Details dieser Regulation derzeit noch unklar sind, zeigen unsere initialen Ergebnisse, dass AUM die Src-Aktivit{\"a}t unabh{\"a}ngig von seiner Phosphatase Aktivit{\"a}t steigert, w{\"a}hrend Src die AUM Phosphatase-Aktivit{\"a}t Kinase-abh{\"a}ngig vermindert. Auf zellul{\"a}rer Ebene sind AUM-depletierte Zellen durch Ver{\"a}nderungen der Aktin- Zytoskelett-Dynamik und der Zelladh{\"a}sion charakterisiert. So weisen AUM-defiziente Zellen stabilisierte Aktin Streßfasern und vergr{\"o}ßerte fokale Adh{\"a}sionen auf. Weiterhin sind AUMdepletierte Zellen durch ein beschleunigtes spreading auf Fibronektin gekennzeichnet. Wir haben mit AUM ein bisher nicht beschriebenes Mitglied der Familie Aspartat-abh{\"a}ngiger Phosphatasen entdeckt. In dieser Arbeit ist es gelungen, AUM phylogenetisch, biochemisch und zellbiologisch zu charakterisieren. Unsere Ergebnisse legen nahe, dass AUM einen wichtigen, neuartigen Regulator der Src-vermittelten Zytoskelett-Dynamik im Rahmen der Zelladh{\"a}sion und Migration darstellt.}, subject = {Tyrosin}, language = {en} }