@phdthesis{Siegl2014, author = {Siegl, Christine}, title = {Degradation of Tumour Suppressor p53 during Chlamydia trachomatis Infections}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108679}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The intracellular pathogen Chlamydia is the causative agent of millions of new infections per year transmitting diseases like trachoma, pelvic inflammatory disease or lymphogranuloma venereum. Undetected or recurrent infections caused by chlamydial persistence are especially likely to provoke severe pathologies. To ensure host cell survival and to facilitate long term infections Chlamydia induces anti-apoptotic pathways, mainly at the level of mitochondria, and restrains activity of pro-apoptotic proteins. Additionally, the pathogen seizes host energy, carbohydrates, amino acids, lipids and nucleotides to facilitate propagation of bacterial progeny and growth of the chlamydial inclusion. At the beginning of this study, Chlamydia-mediated apoptosis resistance to DNA damage induced by the topoisomerase inhibitor etoposide was investigated. In the course of this, a central cellular protein crucial for etoposide-mediated apoptosis, the tumour suppressor p53, was found to be downregulated during Chlamydia infections. Subsequently, different chlamydial strains and serovars were examined and p53 downregulation was ascertained to be a general feature during Chlamydia infections of human cells. Reduction of p53 protein level was established to be mediated by the PI3K-Akt signalling pathway, activation of the E3-ubiquitin ligase HDM2 and final degradation by the proteasome. Additionally, an intriguing discrepancy between infections of human and mouse cells was detected. Both activation of the PI3K-Akt pathway as well as degradation of p53 could not be observed in Chlamydia-infected mouse cells. Recently, production of reactive oxygen species (ROS) and damage to host cell DNA was reported to occur during Chlamydia infection. Thus, degradation of p53 strongly contributes to the anti-apoptotic environment crucial for chlamydial infection. To verify the importance of p53 degradation for chlamydial growth and development, p53 was stabilised and activated by the HDM2-inhibiting drug nutlin-3 and the DNA damage-inducing compound etoposide. Unexpectedly, chlamydial development was severely impaired and inclusion formation was defective. Completion of the chlamydial developmental cycle was prevented resulting in loss of infectivity. Intriguingly, removal of the p53 activating stimulus allowed formation of the bacterial inclusion and recovery of infectivity. A similar observation of growth recovery was made in infected cell lines deficient for p53. As bacterial growth and inclusion formation was strongly delayed in the presence of activated p53, p53-mediated inhibitory regulation of cellular metabolism was suspected to contribute to chlamydial growth defects. To verify this, glycolytic and pentose phosphate pathways were analysed revealing the importance of a functioning PPP for chlamydial growth. In addition, increased expression of glucose-6-phosphate dehydrogenase rescued chlamydial growth inhibition induced by activated p53. The rescuing effect was even more pronounced in p53-deficient cells treated with etoposide or nutlin-3 revealing additional p53-independent aspects of Chlamydia inhibition. Removal of ROS by anti-oxidant compounds was not sufficient to rescue chlamydial infectivity. Apparently, not only the anti-oxidant capacities of the PPP but also provision of precursors for nucleotide synthesis as well as contribution to DNA repair are important for successful chlamydial growth. Modulation of host cell signalling was previously reported for a number of pathogens. As formation of ROS and DNA damage are likely to occur during infections of intracellular bacteria, several strategies to manipulate the host and to inhibit induction of apoptosis were invented. Downregulation of the tumour suppressor p53 is a crucial point during development of Chlamydia, ensuring both host cell survival and metabolic support conducive to chlamydial growth.}, subject = {Chlamydia-trachomatis-Infektion}, language = {en} } @article{SieglPrustyKarunakaranetal.2014, author = {Siegl, Christine and Prusty, Bhupesh K. and Karunakaran, Karthika and Wischhusen, J{\"o}rg and Rudel, Thomas}, title = {Tumor Suppressor p53 Alters Host Cell Metabolism to Limit Chlamydia trachomatis Infection}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {3}, issn = {2211-1247}, doi = {10.1016/j.celrep.2014.10.004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118200}, pages = {918-929}, year = {2014}, abstract = {Obligate intracellular bacteria depend entirely on nutrients from the host cell for their reproduction. Here, we show that obligate intracellular Chlamydia downregulate the central tumor suppressor p53 in human cells. This reduction of p53 levels is mediated by the PI3K-Akt signaling pathway, activation of HDM2, and subsequent proteasomal degradation of p53. The stabilization of p53 in human cells severely impaired chlamydial development and caused the loss of infectious particle formation. DNA-damage-induced p53 interfered with chlamydial development through downregulation of the pentose phosphate pathway (PPP). Increased expression of the PPP key enzyme glucose-6-phosphate dehydrogenase rescued the inhibition of chlamydial growth induced by DNA damage or stabilized p53. Thus, downregulation of p53 is a key event in the chlamydial life cycle that reprograms the host cell to create a metabolic environment supportive of chlamydial growth.}, language = {en} } @article{RudelPrustySiegletal.2014, author = {Rudel, Thomas and Prusty, Bhupesh K. and Siegl, Christine and Gulve, Nitish and Mori, Yasuko}, title = {GP96 Interacts with HHV-6 during Viral Entry and Directs It for Cellular Degradation}, doi = {10. 1371/journal.pone.0113962}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111068}, year = {2014}, abstract = {CD46 and CD134 mediate attachment of Human Herpesvirus 6A (HHV-6A) and HHV-6B to host cell, respectively. But many cell types interfere with viral infection through rapid degradation of viral DNA. Hence, not all cells expressing these receptors are permissive to HHV-6 DNA replication and production of infective virions suggesting the involvement of additional factors that influence HHV-6 propagation. Here, we used a proteomics approach to identify other host cell proteins necessary for HHV-6 binding and entry. We found host cell chaperone protein GP96 to interact with HHV-6A and HHV-6B and to interfere with virus propagation within the host cell. In human peripheral blood mononuclear cells (PBMCs), GP96 is transported to the cell surface upon infection with HHV-6 and interacts with HHV-6A and -6B through its C-terminal end. Suppression of GP96 expression decreased initial viral binding but increased viral DNA replication. Transient expression of human GP96 allowed HHV-6 entry into CHO-K1 cells even in the absence of CD46. Thus, our results suggest an important role for GP96 during HHV-6 infection, which possibly supports the cellular degradation of the virus.}, language = {en} }