@phdthesis{Koch2022, author = {Koch, Franziska}, title = {Die natriuretischen Peptide ANP, BNP und CNP stimulieren die Kommunikation zwischen Perizyten und Endothelzellen w{\"a}hrend der physiologischen Angiogenese.}, doi = {10.25972/OPUS-27659}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276598}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Sowohl der ANP und BNP bindende Guanylylzyklase-A-Rezeptor, als auch der CNP bindende Guanylylzyklase-B-Rezeptor auf den die Endothelzellen ummantelnden Perizyten sind f{\"u}r eine normale postnatale Gef{\"a}ßentwicklung in der Netzhaut der Maus von entscheidender Bedeutung. Eine perizytenspezifische Deletion der Guanylylzyklase-Rezeptoren f{\"u}hrt in M{\"a}usen zu einer signifikanten Verminderung der postnatalen Ausdehnung sowie der Dichte des Gef{\"a}ßnetzes. Dies ist nicht auf eine Verminderung der Bedeckung des Endothels durch Perizyten zur{\"u}ckzuf{\"u}hren. Weiterhin geht diese Rezeptordeletion mit einer geschlechterunabh{\"a}ngigen Erh{\"o}hung des systolischen Blutdrucks einher. Die intrazellul{\"a}re Weiterleitung, des durch die natriuretischen Peptide ausgel{\"o}sten cGMP-Signals erfolgt {\"u}ber die cGMP-abh{\"a}ngige Proteinkinase Typ I (cGKI).}, subject = {physiologiesche Angiogene}, language = {de} } @phdthesis{Mrestani2022, author = {Mrestani, Achmed}, title = {Strukturelle Differenzierung und Plastizit{\"a}t pr{\"a}synaptischer Aktiver Zonen}, doi = {10.25972/OPUS-23578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235787}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Ziel der vorliegenden Arbeit war die nanoskopische Analyse struktureller Differenzierung und Plastizit{\"a}t pr{\"a}synaptischer aktiver Zonen (AZs) an der NMJ von Drosophila melanogaster mittels hochaufl{\"o}sender, lichtmikroskopischer Bildgebung von Bruchpilot (Brp). In erster Linie wurde das lokalisationsmikroskopische Verfahren dSTORM angewendet. Es wurden neue Analyse-Algorithmen auf der Basis von HDBSCAN entwickelt, um eine objektive, in weiten Teilen automatisierte Quantifizierung bis auf Ebene der Substruktur der AZ zu erm{\"o}glichen. Die Differenzierung wurde am Beispiel phasischer und tonischer Synapsen, die an dieser NMJ durch Is- und Ib-Neurone gebildet werden, untersucht. Phasische Is-Synapsen mit hoher Freisetzungswahrscheinlichkeit zeigten kleinere, kompaktere AZs mit weniger Molek{\"u}len und h{\"o}herer molekularer Dichte mit ebenfalls kleineren, kompakteren Brp-Subclustern. Akute strukturelle Plastizit{\"a}t wurde am Beispiel pr{\"a}synaptischer Hom{\"o}ostase, bei der es zu einer kompensatorisch erh{\"o}hten Neurotransmitterfreisetzung kommt, analysiert. Interessanterweise zeigte sich hier ebenfalls eine kompaktere Konfiguration der AZ, die sich auch auf Ebene der Subcluster widerspiegelte, ohne Rekrutierung von Molek{\"u}len. Es konnte demonstriert werden, dass sich eine h{\"o}here Molek{\"u}ldichte in der Lokalisationsmikroskopie in eine h{\"o}here Intensit{\"a}t und gr{\"o}ßere Fl{\"a}che in der konfokalen Mikroskopie {\"u}bersetzt, und damit der Zusammenhang zu scheinbar gegens{\"a}tzlichen Vorbefunden hergestellt werden. Die Verdichtung bzw. Kompaktierung erscheint im Zusammenhang mit der Kopplungsdistanz zwischen VGCCs und pr{\"a}synaptischen Vesikeln als plausibles Muster der effizienten Anordnung molekularer Komponenten der AZ. Die hier eingef{\"u}hrten Analysewerkzeuge und molekularbiologischen Strategien, basierend auf dem CRISPR/Cas9-System, zur Markierung von AZ-Komponenten k{\"o}nnen zuk{\"u}nftig zur weiteren Kl{\"a}rung der Bedeutung der molekularen Verdichtung als allgemeines Konzept der AZ-Differenzierung beitragen.}, subject = {Synapse}, language = {de} }