@phdthesis{Burzler2007, author = {Burzler, Michael}, title = {Synthese, Struktur und Reaktivit{\"a}t von Borylenkomplexen des Mangans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26377}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Im Rahmen dieser Doktorarbeit sind neue Borylenkomplexe synthetisiert worden, die am Boratom keinen pi-Donor tragen und eine umfangreiche Chemie erm{\"o}glichen. Zum Beispiel wurde eine [2+2]-Cycloaddition und eine Metathesereaktion eines Borylenkomplexes beobachtet. Ebenfalls wurde ein stabiles Bornucleophil erhalten.}, subject = {Bor}, language = {de} } @phdthesis{Lentze2009, author = {Lentze, Michael}, title = {Spin-flip Raman Untersuchungen an semimagnetischen II-VI Halbleiter-Quantentr{\"o}gen und Volumenproben}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34834}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Im Zentrum dieser Arbeit standen ramanspektroskopische Untersuchungen der elektronischen spin-flip-{\"U}berg{\"a}nge an semimagnetischen (Zn,Mn)Se Proben. Hierbei wurden sowohl Quantentrogstrukturen untersucht als auch volumenartige Proben. Ziel der Forschung war dabei, ein tieferes Verst{\"a}ndnis der Wechselwirkungen der magnetischen Ionen mit den Leitungsbandelektronen der Materialien zu gewinnen. Im Hinblick auf m{\"o}gliche zuk{\"u}nftige spin-basierte Bauelemente lag das Hauptaugenmerk auf dem Einfluss von n-Dotierung bis zu sehr hohen Konzentration. Hierf{\"u}r standen verschiedene Probenreihen mit unterschiedlichen Dotierungskonzentrationen zur Verf{\"u}gung.}, subject = {Dotierter Halbleiter}, language = {de} } @phdthesis{Roschmann2002, author = {Roschmann, Konrad J.}, title = {Mn(salen)- und Fe(porph)-katalysierte enantioselektive Epoxidierungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1182584}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Ziel der vorliegenden Arbeit war es zum einen, das Potential von chiralen Eisenporphyrin- und Mangansalen-Katalysatoren zur kinetischen Racematspaltung sekund{\"a}rer Allylalkohole durch asymmetrische Epoxidierung auszuloten. Zum anderen sollten Untersuchungen zum Mechanismus der Jacobsen-Katsuki-Epoxidierung durchgef{\"u}hrt werden; ein besonderes Augenmerk lag dabei auf der Fragestellung, welche Faktoren dazu f{\"u}hren, dass bei der Umsetzung von cis-Olefinen ein Gemisch aus cis- und trans-Epoxiden erhalten wird. Eine Auswahl arylsubstituierter Allylalkohole IIa-f wurde mit den Katalysatoren Ia und Ib,c und 0.8 bzw. 0.6 {\"A}quivalenten an Iodosobenzol als Sauerstoffdonor umgesetzt (Gl. I), wobei es zu einer kinetischen Racematspaltung kommt. Die Oxidation verl{\"a}uft f{\"u}r beide Katalysatorsysteme sowohl chemoselektiv (vorwiegend Epoxidierung) als auch diastereoselektiv (dr bis zu > 95:5). Als Hauptprodukte werden f{\"u}r die offenkettigen Allylalkohole IIa,e,f die threo-konfigurierten Epoxyalkohole III erhalten, w{\"a}hrend die cyclischen Allylakohole IIb-d die entsprechenden cis-Epoxyalkohole III lieferen. 1,1-Dimethyl-1,2-dihydro-2-naphthol (IIc) ist hierbei eine Ausnahme, da die CH-Oxidation dieses Substrats eine beachtliche Nebenreaktion darstellt. Der Hauptunterschied zwischen den Fe- und Mn-Katalysatoren liegt in der Enantioselektivit{\"a}t: W{\"a}hrend mit dem Fe(porph*)-Komplex Ia nur Selektivit{\"a}ten von maximal 43 Prozent ee (krel = 2.7) erzielt werden, erwiesen sich die Mn(salen*)-Komplexe Ib,c als geeignete Katalysatoren, mit denen ee-Werte von bis zu 80 Prozent (krel = 12.9) erreicht werden. Die in der kinetischen Racematspaltung erzielten Selektivit{\"a}ten k{\"o}nnen durch ein synergistisches Zusammenwirken von hydroxy-dirigierendem Effekt einerseits und sterischen Wechselwirkungen zwischen Substrat und Eisen-Komplex oder, im Falle des Mangan-Komplexes, Angriff des Olefins entlang der so genannten Katsuki-Trajektorie andererseits erkl{\"a}rt werden. Fazit: Die chiralen Mn(salen*)-Komplexe Ib,c sind wirkungsvolle Katalysatoren f{\"u}r die asymmetrische Epoxidierung racemischer sekund{\"a}rer Allylalkohole II. In exzellenten Chemo- und Diastereoselektivit{\"a}ten entstehen die entsprechenden Epoxyalkohole III mit ee-Werten bis zu 80 Prozent. Die zur{\"u}ckbleibenden Allylalkohole werden dabei bis zu 53 Prozent ee angereichert. Im Vergleich dazu weist der Eisenkomplex Ia eine ungleich geringere Enantioselektivit{\"a}t auf. Mechanistische Untersuchungen mit Vinylcyclopropan Va ergeben, dass die Jacobsen-Katsuki-Epoxidierung nicht {\"u}ber ein kationisches, sondern {\"u}ber ein radikalisches Intermediat abl{\"a}uft. Dies wird anhand von Produktstudien durch reversed phase-HPLC-Analytik belegt. In weitergehenden Untersuchungen mit cis-Stilben (Vb) und cis-\&\#61538;-Methylstyrol (Vc) als Sonden zur cis/trans-Isomerisierung wurde festgestellt, dass die Diastereoselektivit{\"a}t der Epoxidierung nicht nur vom Gegenion des Mangankatalysators Ib, sondern auch von der eingesetzten Sauerstoffquelle [OxD] abh{\"a}ngt. Daher musste der Katalysezyklus (Schema A) um eine diastereoselektivit{\"a}ts-bestimmende Gabelung erweitert werden: Das prim{\"a}r entstehende MnIII(OxD)-Addukt kann entweder unter Abspaltung der Fluchtgruppe zum etablierten MnV(oxo)-Komplex reagieren (Weg 1) oder direkt das Olefin epoxidieren (Weg 2). W{\"a}hrend die Sauerstoff{\"u}bertragung durch die Oxo-Spezies stufenweise {\"u}ber ein Radikalintermediat verl{\"a}uft und damit zu einer Mischung aus cis- und trans-Epoxid f{\"u}hrt, erfolgt der Lewis{\"a}ure-aktivierte Sauerstofftransfer konzertiert. Der Gegenion-Effekt auf die cis/trans-Isomerisierung erkl{\"a}rt sich dahingehend, dass die Natur des Anions (koordinierend oder nicht-koordinierend) die Lebensdauer des Radikalintermediats und/oder die Lage und Selektivit{\"a}t der Energiehyperfl{\"a}chen der verschiedenen Spinzust{\"a}nde des MnV(oxo)-Oxidans beeinflusst. Fazit: In der Jacobsen-Katsuki-Epoxidierung existiert neben dem etablierten MnV(oxo)-Oxidans zumindest noch ein weiteres; dabei handelt es sich um das MnIII(OxD)-Addukt, dessen Sauerstoff Lewiss{\"a}ure-aktiviert {\"u}bertragen wird. Ein unterschiedlicher Anteil der beiden Reaktionskan{\"a}le erkl{\"a}rt die Unterschiede im Ausmaß der cis/trans-Isomerisierung. Auch das Gegenion des Mangan-Komplexes Ib beeinflusst die cis/trans-Diastereoselektivit{\"a}t. Mit koordinierenden Gegenionen dominiert Isomerisierung zum trans-Epoxid, w{\"a}hrend nicht-koordinierende Gegenionen bevorzugt zum cis-Epoxid f{\"u}hren.}, subject = {Mangan}, language = {de} } @phdthesis{Werner2010, author = {Werner, Anne}, title = {Beitr{\"a}ge zu makromolekularen Kontrastmitteln f{\"u}r die Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56331}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese heptadentater Ligandsysteme f{\"u}r die Magnetresonanztomographie. Neben der Synthese von Gadolinium- und Mangankomplexen stand die Entwicklung makromolekularer Kontrastmittel auf Dendrimerbasis im Mittelpunkt dieser Arbeit.}, subject = {NMR-Tomographie}, language = {de} }