@phdthesis{Brandt2004, author = {Brandt, Rainer}, title = {Sauer katalysierte, unterkritisch getrocknete Resorcin-Formaldehyd-Aerogele und daraus abgeleitete Kohlenstoff-Aerogele}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15795}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Resorcin-Formaldehyd (RF) Aerogele sind feinstpor{\"o}se organische Stoffe, die {\"u}ber einen katalysierten Sol-Gel-Prozeß und anschließende Trocknung gewonnen werden. In ihrem chemischen Aufbau sind sie den Phenoplasten oder Phenolharzen sehr {\"a}hnlich. Durch Erhitzung auf {\"u}ber 900 K unter Schutzgas lassen sich die organischen Aerogele in elektrisch leitf{\"a}hige Kohlenstoff (C) Aerogele umwandeln. Durch die Menge der w{\"a}ßrigen Verd{\"u}nnung, sowie die Art und Konzentration des eingesetzten Katalysators, l{\"a}ßt sich die Poren- und Partikelgr{\"o}ße sowie die Porosit{\"a}t des im Sol-Gel-Prozeß entstehenden Gels beeinflussen. Aufgrund dieser M{\"o}glichkeit, die Eigenschaften der RF- und C-Aerogele „maßzuschneidern", bieten sich Einsatz- und Optimierungsm{\"o}glichkeiten bei zahlreichen technischen Anwendungen: z.B. bei Isolationsmaterialien, bei der Gasw{\"a}sche und in der Elektrochemie als Elektrodenmaterial f{\"u}r Batterien und Kondensatoren, sowie zur Elektrolyse. Bisherige systematische Untersuchungen unter Variation der Katalysator- und Monomerkonzentration beschr{\"a}nkten sich zumeist auf mit Na2CO3 basisch katalysierte RF- und C-Aerogele. Um metallische Verunreinigungen zu vermeiden, die sich beispielsweise beim Einsatz von C-Aerogelen als Substrat f{\"u}r Halbleiter st{\"o}rend auswirken, wurde in der vorliegenden Arbeit die Wirkung von carbonsauren Katalysatoren, insbesondere Essigs{\"a}ure und vereinzelt auch Ameisens{\"a}ure, auf die Strukturen und Eigenschaften der entstehenden Aerogele systematisch untersucht. Da im Hinblick auf sp{\"a}tere Anwendungen stets eine vereinfachte unterkritische Trocknung mit Austausch des Porenwassers durch Aceton durchgef{\"u}hrt wurde, wurde zum Vergleich auch eine entsprechend getrocknete Probenserie Na2CO3-katalysierter RF- und C-Aerogele hergestellt und untersucht. Strukturelle Untersuchungen mittels REM, R{\"o}ntgenkleinwinkelstreuung (SAXS) und Gassorptionsmessungen ergaben {\"a}hnlich wie bei basisch katalysierten Aerogelen eine Abnahme des Prim{\"a}rpartikeldurchmessers mit steigendem Katalysatorgehalt und best{\"a}tigten damit die Wirksamkeit der protoneninduzierten Katalyse, welche ab etwa pH = 5 einsetzen sollte. Allerdings zeigte sich, daß der essigsaure Katalysator weniger wirksam ist als Na2CO3, so daß zur Herstellung sehr fein strukturierter Aerogele mit geringen Dichten und Strukturen im nm-Bereich extrem hohe Katalysatorkonzentrationen bis in die Gr{\"o}ßenordnung der Stoffmenge des w{\"a}ssrigen L{\"o}sungsmittels n{\"o}tig sind. Wie auch bei basischer Katalyse mit geringer Katalysatorkonzentration, ergaben Variationen der Monomerkonzentration bei den essigsauer katalysierten Proben eine Poren- und Partikelverkleinerung mit zunehmendem Monomergehalt, jedoch mit gr{\"o}ßerer Verteilungsbreite als bei der basischen Katalyse. Bei der Na2CO3-Katalyse mit hohen Katalysatorkonzentrationen und bei unterkritischer Trocknung, kompensierte die mit sinkender Monomerkonzentration stark ansteigende trocknungsbedingte Schrumpfung die zu erwartende Porosit{\"a}tszunahme, so daß sich bei einheitlicher Katalysator- und verschiedenen Monomerkonzentrationen kaum strukturelle und Dichte{\"a}nderungen einstellten. Die schwach essigsauer katalysierten Proben zeigten im Vergleich zu den basischen eine stark ver{\"a}nderte Morphologie. W{\"a}hrend bei letzteren die Kontaktstellen zwischen den Prim{\"a}rpartikeln mit steigendem Partikeldurchmesser immer sp{\"a}rlicher ausfallen, gibt es bei carbonsauer katalysierten RF- und C-Aerogelen auch bei Prim{\"a}rpartikeln im µm-Bereich ein ausgepr{\"a}gtes Halswachstum. Weiterhin haben die µm-großen Prim{\"a}rpartikel basisch katalysierter RF-Aerogele ein clusterartiges Erscheinungsbild, w{\"a}hrend man bei essigsauer katalysierten kugelrunde Prim{\"a}rpartikel findet. Zur Untersuchung des Gelierprozesses wurden einige Proben mit ver{\"a}nderten Gelierzeiten und -temperaturen hergestellt. So konnte festgestellt werden, daß die Verweildauer bei Zimmertemperatur im Zusammenhang mit dem Prim{\"a}rpartikelwachstum steht, w{\"a}hrend bei h{\"o}heren Temperaturen die Vernetzung der Prim{\"a}rpartikeln untereinander gef{\"o}rdert wird. Zu kurze Gelierzeiten und ein Verzicht auf h{\"o}here Temperaturen f{\"u}hrt zu einer sehr starken Schrumpfung bei der unterkritischen Trocknung und damit zu nahezu unpor{\"o}sen harzartigen Materialien.}, subject = {Aerogel}, language = {de} } @phdthesis{Krueger2002, author = {Kr{\"u}ger, Reinhard}, title = {Pyrolyse- und Sinterverhalten Sol-Gel-abgeleiteter Al2O3-YAG-Fasern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6827}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Nichtw{\"a}ßrige Sol-Gel-Vorstufen, die zu einem Mischgef{\"u}ge aus Al2O3 und YAG f{\"u}hren (Volumenverh{\"a}ltnis 45 : 55), wurden zu Fasern versponnen, in unterschiedlichen Atmosph{\"a}ren pyrolysiert und abschließend gesintert. Die strukturelle Ent-wicklung w{\"a}hrend der Pyrolyse der Gel-Fasern wurde in Abh{\"a}ngigkeit von Pyrolysetemperatur (200-850 °C) und -atmosph{\"a}re beschrieben. Die Zusammenh{\"a}nge zwischen den mittels der Pyrolyseparameter variierten amorphen Strukturen und dem daraus resultierenden Kristallisations- und Sinterverhalten sowie den mechanischen Fasereigenschaften wurden gezeigt. Die isotropen Gel-Fasern sind frei von Poren und weisen lokal regelm{\"a}ßig angeordnete, organische Dom{\"a}nen mit mittleren Abst{\"a}nden von 2 nm innerhalb des anorganischen Matrixger{\"u}sts auf. W{\"a}hrend der Pyrolyse auftretende Strukturver{\"a}nderungen h{\"a}ngen stark von der Atmosph{\"a}re und der Temperatur ab. In Luft- und Sauerstoffatmosph{\"a}re trat ab 600 °C innerhalb der Fasern lokal eine Kristallisation von YAG und Korund in Form kugeliger Bereiche auf, die zum Bruch der Fasern bereits w{\"a}hrend der Pyrolyse f{\"u}hrten. Die Abgabe organischer Bestandteile erfolgte bei Pyrolyse in Stickstoff im wesentlichen zwischen 300 °C und 500 °C, blieb jedoch auch bei h{\"o}heren Temperaturen unvollst{\"a}ndig. In Wasserdampf-Atmosph{\"a}re kam es durch Hydrolysereaktionen zwischen 250 °C und 385 °C zu einer verbesserten Abgabe der organischen Bestandteile. Der Kohlenstoffgehalt sinkt bei 385 °C unter 2 Masse-\%. Werden dem Wasserdampf saure Gase wie z.B. Stickoxide zugesetzt, wird um 200 °C die Hydrolyse und Abgabe der Organik zus{\"a}tzlich verst{\"a}rkt. Nach Pyrolyse in Stickstoff oder wasserhaltigen Atmosph{\"a}ren blieben die Fasern amorph. Bei Pyrolyse in Stickstoff war die Struktur der Fasern porenfrei, wobei die organischen Pyrolysatreste wie in den Gel-Fasern als regelm{\"a}ßig angeordnete, isolierte Bereiche innerhalb einer anorganischen Matrix vorlagen. In Wasserdampf bildete sich ab 250 °C aus den organischen Dom{\"a}nen eine geordnete Porenstruktur, die sich mit ansteigender Temperatur vergr{\"o}berte. Auch in der aus verdampfter Salpeters{\"a}ure erzeugten Atmosph{\"a}re bildeten sich Poren. Die Porendurchmesser und spezifischen Oberfl{\"a}chen der Fasern blieben jedoch geringer als in reinem Wasserdampf. In dem anorganischen Matrixger{\"u}st {\"a}nderten sich durch die Pyrolyse die Koordinationsverh{\"a}ltnisse der Al-Ionen. Ausgehend von der mehrheitlich 6-fachen Koordination in den Gel-Fasern kam es zunehmend zur Umlagerung in die 4- und 5-fache Koordination. Bei Pyrolyse in reinem Wasserdampf war diese Koordinationsver{\"a}nderung deutlich schw{\"a}cher ausgepr{\"a}gt als in Stickstoff oder der Atmosph{\"a}re aus verdampfter Salpeters{\"a}ure. W{\"a}hrend der Sinterung treten intermedi{\"a}r gamma-Al2O3 und hexagonales YAlO3 als metastabile Phasen vor der Kristallisation von YAG auf. Mit der Kristallisation von Korund schließt die Phasenbildung der Al2O3-YAG-Fasern je nach vorangegangener Pyrolysebehandlung zwischen 1275 °C und 1315 °C ab. Die Abweichungen in der Kristallisationstemperatur bzw. Keimbildungsdichte von Korund und im Sinterverhalten ließen sich auf die Unterschiede in den amorphen Strukturen der pyrolysierten Fasern zur{\"u}ckf{\"u}hren. Hohe Anteile 6-fach koordinierter Al-Ionen und eine zu hohen spezifischen Oberfl{\"a}chen f{\"u}hrende, feine Porosit{\"a}t erwiesen sich als g{\"u}nstige Strukturmerkmale f{\"u}r pyrolysierte Fasern. Die dabei entstandenen feink{\"o}rnigen, homogenen Gef{\"u}ge konnten dicht gesintert werden und hatten die h{\"o}chsten Festigkeiten und E-Moduln. Kohlenstoffgehalte bis zu 2 Masse-\% wirkten sich in den offenporigen Zwischenprodukten nicht negativ auf das Sinterverhalten aus. In dieser Arbeit wurde gezeigt, daß die Kristallisation der Sol-Gel-abgeleiteten Fasern und damit auch die Ausbildung der keramischen Gef{\"u}ge in entscheidendem Maße von den Pyrolysebedingungen abh{\"a}ngen. Bei einheitlicher Synthese der Gel-Fasern lassen sich durch die Pyrolysebehandlung unterschiedliche Strukturen in den amorphen Zwischenprodukten einstellen, die durch ihre spezifisches Kristallisations- und Sinterverhalten zu unterschiedlichen keramischen Gef{\"u}gen in den Fasern f{\"u}hren. Die Optimierung der Gef{\"u}ge vorstufenabgeleiteter Keramiken durch Zusatz von Keimen ("Seeding") ist seit l{\"a}ngerem bekannt. In Erg{\"a}nzung dazu bietet die gezielte Wahl der Pyrolysebedingungen eine weitere M{\"o}glichkeit zur Steuerung der Gef{\"u}geausbildung in Sol-Gel-Keramiken.}, subject = {Keramikfaser}, language = {de} } @phdthesis{Steinbauer2012, author = {Steinbauer, Michael Christoph}, title = {Ionen- und Elektronenimaging reaktiver Molek{\"u}le: Ethyl, Propargylen und Fulvenallenyl}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75649}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Bei Verbrennungsprozessen im Otto-Motor, beim Raffinationsprozess in Erd{\"o}lraffinerien, im interstellaren Raum oder in der Chemie der Erdatmosph{\"a}re spielen Molek{\"u}le, wie sie in dieser Arbeit untersucht wurden, eine wichtige Rolle. Allerdings stellt es eine große Herausforderung dar, solch reaktive Substanzen zu erzeugen und zu handhaben. Um das Ethyl-Radikal, ein wichtiges Intermediat z.B. in der Erzeugung von Ethylen, zu untersuchen, wurde eine bestehende Apparatur modifiziert. Diese erm{\"o}glicht es, die Geschwindigkeitsverteilung der Fragmente (Ionen oder Elektronen) zweidimensional aufzuzeichnen, die nach der Anregung mittels Laserlicht durch Photodissoziation entstehen. Diese velocity-map imaging Apparatur wurde in einem ersten Schritt mittels der Photodissoziation von Pyrrol bei 240 nm kalibriert. Cycloheptatrien konnte erfolgreich auf seine Photodissoziation untersucht werden, was als Test des VMI-Experiment genutzt wurde. Die gewonnenen Ergebnisse stimmten mit Resultaten {\"u}berein, welche durch Doppler-Fragmentspektroskopie in dieser und fr{\"u}heren Arbeiten gewonnen wurden. Zwischen 11 und 13 \% der {\"U}berschussenergie gehen dabei in die Translation des H-Atoms. • Das Ethyl-Radikal zeigte, als das erste mit unserer VMI-Apparatur untersuchte Radikal, eine interessante Photodissoziation: Wird es bei 250 nm angeregt, ergeben sich zwei Dissoziationskan{\"a}le, wobei ein bekannter Kanal nach schneller interner Konversion in den Grundzustand Fragmente mit geringer Translationsenergie erzeugt. Der zweite Kanal zeigt anisotropes Verhalten und erzeugt Wasserstoffatome mit hoher Translationsenergie, die mehr als die H{\"a}lfte der {\"U}berschussenergie abf{\"u}hren. Die Erkl{\"a}rung dieses Prozesses erweist sich schwierig in Anbetracht von durchgef{\"u}hrten Isotopenmarkierungsexperimenten sowie der beobachteten Ratenkonstanten f{\"u}r die Photodissoziation. Eine Interaktion von Valenz- und Rydbergzust{\"a}nden im Ethyl-Radikal k{\"o}nnte eine Erkl{\"a}rung darstellen. In Zukunft kann beim VMI-Experiment in W{\"u}rzburg versucht werden, die Aufl{\"o}sung weiter zu verbessern. Dabei erg{\"a}ben sich im Idealfall zwei scharfe Ringe der H-Atome durch die Spin-Bahn-Aufspaltung von Brom, welche eine sehr genaue Kalibrierung erm{\"o}glichen. Neben den Ergebnissen auf dem Gebiet der Photodissoziation, die mit der VMI-Apparatur erzielt wurden, konnten mittels Synchrotronstrahlung und Aufzeichnen der Photoelektronen mittels VMI und der TPEPICO-Technik die folgenden Ergebnisse erhalten werden: • Von Propargylen, einem von drei C3H2 Isomeren, konnte die adiabatische Ionisierungsenergie (IEad) mit 8.99 eV bestimmt werden. Der Vorl{\"a}ufer Diazopropin, eine sehr instabile Substanz, wurde dazu synthetisiert und mit Synchrotronlicht untersucht. Allerdings war es nicht m{\"o}glich, die Schwingungen im Kation oder die dissoziative Photoionisation (DPI) des Carbens zu untersuchen, da Diazopropin seinerseits bereits bei Energien von 9 eV durch DPI zerf{\"a}llt. Allerdings konnte ein Peak im TPES des zyklischen Isomers aus einer fr{\"u}heren Messung eindeutig dem Propargylen zugeordnet werden. Ein Ausweg die DPI zu umgehen stellt die Verwendung eines anderen Vorl{\"a}ufers dar. Beispielsweise wurde dazu Propargylchlorid getestet, welches aber nicht das Propargylen erzeugt, sondern das zyklische Isomer Cyclopropenyliden. Daneben k{\"o}nnen durch ein Doppel-Imaging Experiment, bei dem die Ionen genauso wie die Elektronen mit einem bildgebenden Detektor aufgezeichnet werden, Ionen mit kinetischer Energie aus DPI von Ionen aus der Ionisation ohne kinetischer Energie unterschieden werden. • Von den substituierten Methyl-Radikalen Brommethyl sowie Cyanomethyl konnte die IEad (8.62 bzw. 10.28 eV) und vom Brommethyl die DPI (AE0K = 13.95 eV) bestimmt werden. Daraus konnte der Einfluss der Substituenten auf die IEad im Vergleich zum Methyl-Radikal (IE = 9.84 eV) gezeigt werden. Das zeigt, dass der Brom-Substituent das Kation, der Cyano-Rest dagegen das Radikal stabilisiert. Ebenso konnten aus den Ergebnissen beim Brommethyl thermodynamische Daten wie die Standardbildungsenthalpie des Radikals (ΔH0f= 174.5 kJ/mol) oder Bindungsenergien gewonnen werden. Letztere betragen 334 kJ/mol f{\"u}r die C-Br Bindung im Brommethyl-Radikal sowie 505 kJ/mol im Kation. • Das Fulvenallen (C7H6) wurde aus Phthalid durch Pyrolyse erzeugt und dessen IEad mit 8.22 eV bestimmt. Schwingungen konnten im Kation aufgel{\"o}st und zugeordnet werden. Außerdem konnte erstmals die IEad des Fulvenallenyl-Radikals (C7H5) mit 8.19 eV festgelegt werden. Im Vergleich zu fr{\"u}heren Messungen zeigte sich, dass aus Toluol in der Pyrolyse ebenfalls die beiden C7H5/C7H6 Isomere entstehen. Um verschiedene C7H5/C7H6 Isomere in einem Verbrennungsprozess zu unterscheiden, w{\"a}re es vorteilhaft, experimentell bestimmte Ionisierungsenergien von anderen Isomeren zu kennen.}, subject = {Radikal }, language = {de} }