@phdthesis{Patrakov2010, author = {Patrakov, Anatoly}, title = {Anwendung der Clustern{\"a}herung zur quantenchemischen Charakterisierung der Struktur und Stabilit{\"a}t von II-VI Halbleitersystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46283}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Kaum ein Bereich der menschlichen T{\"a}tigkeit hat sich jemals so st{\"u}rmisch entwickelt, wie die Mikro- und Nanoelektronik in den letzten Jahrzehnten. Der rasche Fortschritt dieser Gebiete war m{\"o}glich, weil die Vorteile in der Anwendung der Mikroelektronik den gewaltigen Entwicklungs- und Forschungsaufwand rechtfertigten. Eine besondere Rolle spielt dabei die Herstellung von Halbleiterbauelementen durch Kristallz{\"u}chtungsmethoden. In dieser Arbeit wurden Prozesse untersucht, die sich auf der Kristalloberfl{\"a}che abspielen und somit das Wachstum von hochgeordneten Kristallstrukturen bestimmen. In den vergangenen Jahren wurden mehrere Methoden zur Untersuchung dieser Prozesse entwickelt, deren Pr{\"a}zision sich von Jahr zu Jahr unabl{\"a}ssig steigerte. In der Reihe der theoretischen Ans{\"a}tze stehen quantenchemische Methoden im Vordergrund. Eine von diesen Methoden, die Dichtefunktionaltheorie, ist aufgrund ihrer Anschaulichkeit und des relativ niedrigen Rechenaufwands das Hauptwerkzeug der vorliegenden Arbeit. Im ersten Teil dieser Arbeit wurden die Wanderungsm{\"o}glichkeiten eines Adsorbatatoms (Cd oder Te) auf der (001) Oberfl{\"a}che von CdTe (Substrat) auf DFT-Niveau im Rahmen der GGA-N{\"a}herung untersucht. Dies erforderte es, die Gesamtenergie des Systems Adsorbat-Kristall an verschiedenen Adsorptionsstellen zu berechnen. Dabei wurde nur ein Teil des Kristalls - das Adsorbat selbst und die n{\"a}chste Umgebung der Adsorptionsstelle (Quantencluster) - auf DFT-Niveau berechnet. Der Einfluss des {\"u}brigen Kristalls auf den Cluster wurde mit einem Gitter aus Punktladungen angen{\"a}hert, wobei die Te- und Cd-Atome die Ladungen \&\#8722;2 bzw. +2 trugen. Bei dem Einsatz dieses Modells ergab sich allerdings das Problem, dass es eigentlich nur auf Ionenkristalle anwendbar ist, die in guter N{\"a}herung volle Ionizit{\"a}t besitzen. CdTe stellt aber laut vielen experimentellen und theoretischen Untersuchungen eine Abstufung zwischen ionischen und kovalenten Kristallen dar, was eine gr{\"u}ndliche Analyse der Abh{\"a}ngigkeit unserer Ergebnisse von der Clustergr{\"o}ße und der Entfernung der Adsorptionsstelle von den Clusterr{\"a}ndern erforderte. Als Ergebnis wurde ein Modell entworfen, das dazu in der Lage ist, die Struktur der (2X1) Te-terminierten CdTe Oberfl{\"a}che mit ausreichender Genauigkeit wiederzugeben. Durch geeignete Wahl des Quantenclusters (ausreichende Gr{\"o}ße in den Richtungen parallel zur Oberfl{\"a}che und Platzierung der weniger polarisierbaren Cd-Kationen an den Außenfl{\"a}chen) gelang es, den Einfluss der Clusteroberfl{\"a}che auf die untersuchten Eigenschaften auf ein akzeptables Maß zu verringern. Die durchgef{\"u}hrten Berechnungen der Cd-Potentialenergiefl{\"a}che zeigen zwei Potentialt{\"o}pfe, mit den Tiefen 2.1 eV und 1.7 eV. Die Existenz dieser beiden Minima ist eng mit der Dimerisierung von Te-Atomen an der adsorbatfreien Te-Oberfl{\"a}che verbunden. Das erste, der Struktur =Te-Cdad-Te= entsprechende Minimum entsteht durch den Bruch einer Te-Te Dimerbindung beim Cd-Angriff an diese Stelle. Der zweite Potentialtopf kommt dadurch zustande, dass das Cd-Adsorbatatom mit zwei entlang der [110]-Richtung angeordneten Te2-Dimeren reagiert. Die Potentialenergiefl{\"a}che des Te-Adsorbats unterscheidet sich zwar wesentlich von der des Cd-Atoms, es gibt aber auch {\"A}hnlichkeiten. Das gilt vor allem f{\"u}r das der Struktur =Te-Tead-Te= entsprechende Minimum, das ungef{\"a}hr 2.8 eV tief ist. Wie im Fall der Cd-Adsorption entsteht diese Struktur infolge der Wechselwirkung eines adsorbierten Te-Atoms mit einem Te2-Dimer auf der Oberfl{\"a}che. Die Ergebnisse unserer Berechnungen best{\"a}tigen experimentelle Hinweise, gem{\"a}ß denen Te- und Cd-Atome aus dem Teilchenfluss, dem die (2X1)Te Oberfl{\"a}che w{\"a}hrend der MBE ausgesetzt ist, leicht adsorbiert werden. Außerdem wurden die relativ genauen Werte der Potentialbarrieren bekommen, die f{\"u}r ein besseres Verst{\"a}ndnis des Wachstumsprozesses zum Beispiel mit Hilfe von Monte-Carlo-Simulationen notwendig sind. Im Vordergrund des zweiten Teils der vorliegenden Arbeit stand die Strukturbestimmung von ZnO-Nanoclustern, die durch spezielle Kristallisationsprozesse erzeugt werden und wegen ihrer eigenartigen optischen und elektronischen Eigenschaften von großem Interesse sind. Zwei grunds{\"a}tzlich unterschiedliche Atomanordnungen wurden betrachtet, wobei festgestellt werden sollte, welche dieser Strukturen in Abh{\"a}ngigkeit von der Clustergr{\"o}ße und der Umgebung stabiler ist. Angenommen wurde dabei, dass diese Tendenz bei der weiteren Vergr{\"o}ßerung der Atomanzahl von Hundert bis mehreren Tausenden erhalten bleibt. Die Clustermodelle erster Art besaßen die f{\"u}r ZnO-Verbindungen typische Wurtzitstruktur, die anderen, sogenannten K{\"a}figcluster, bestanden aus Zn3O3- und (oder) Zn2O2-Ringen, die so verkn{\"u}pft sind, dass sie kugel- oder zylinderf{\"o}rmige Strukturen bilden. Charakteristisch f{\"u}r letztere Cluster ist eine Homogenit{\"a}t der Atomumgebung, da alle Zn- und O-Atome dreifach koordiniert sind, w{\"a}hrend sie in Wurtzitstrukturen im Wesentlichen vierfach koordiniert sind. Durch Kn{\"u}pfung zus{\"a}tzlicher Zn-O Bindungen konnte die Anzahl der in Frage kommenden Strukturen nennenswert vergr{\"o}ßert werden. Dabei entstehen vierfach koordinierten Atome und, laut den Berechnungen, deutlich stabilere Cluster. Die Rechnungen wurden sowohl im Vakuum als auch im Rahmen des COSMO Verfahrens (im „Wasser") durchgef{\"u}hrt. Sie ergaben, dass die Wurtzitstrukturen bei der Zunahme der Atomanzahl stabiler werden als ihre K{\"a}fig-Analoge. Dieses Ergebnis ist allerdings eher von theoretischem Interesse, da die experimentell in einer L{\"o}sung gez{\"u}chteten ZnO-Nanocluster an ihrer Oberfl{\"a}che mit Molek{\"u}len aus der L{\"o}sung bedeckt sind. Ein weiterer Schritt war daher, den Einfluss der Umgebung auf die Bildungsenergie durch die Abs{\"a}ttigung der Oberfl{\"a}che mit H+- und OH\&\#8722;-Ionen zu simulieren. Als Bezugspunkt f{\"u}r die Berechnung der Bildungsenergie der verschiedenen Cluster wurde der Molek{\"u}lkomplex Zn(OH)2(H2O)2 verwendet. Mit anderen Worten wurde angenommen, dass ein freies Zn2+-Ion in der L{\"o}sung von zwei OH\&\#8722;-Gruppen und zwei H2O-Molek{\"u}len umgeben ist. Die Ergebnisse zeigen, dass die Abs{\"a}ttigung einen starken Einfluss auf die Randbereiche der wurtzitartigen Cluster aus{\"u}bt. Bei fast allen Clustermodellen sind diese stark verformt, w{\"a}hrend bei den K{\"a}figstrukturen nur deutlich geringere Verzerrungen beobachtet werden. Ebenso stark ist der Einfluss auf die Bildungsenergie: Verglichen mit ihren unabges{\"a}ttigten Analogen werden alle abges{\"a}ttigte Strukturen erheblich stabiler, was auf die Tatsache zur{\"u}ckzuf{\"u}hren ist, dass durch die OH\&\#8722; -Gruppen und H+-Kationen die freien Valenzen an der Clusteroberfl{\"a}che abges{\"a}ttigt werden. Ansonsten lassen sich bei den abges{\"a}ttigten Strukturen dieselben Tendenzen erkennen, wie bei nicht abges{\"a}ttigten. So werden Wurtzitstrukturen mit zunehmender Clustergr{\"o}ße energetisch g{\"u}nstiger als K{\"a}figstrukturen mit der gleichen Anzahl an Atomen. Da es die im Rahmen dieser Arbeit festgestellten Regelm{\"a}ßigkeiten erm{\"o}glichen, die stabilsten ZnO-Atomanordnungen auf die hier Betrachteten einzuschr{\"a}nken, ergibt sich, dass die stabilste Struktur f{\"u}r Nanocluster wurtzitartig ist. Dies stimmt auch mit allen verf{\"u}gbaren experimentellen Daten {\"u}berein.}, subject = {Zwei-Sechs-Halbleiter}, language = {de} }