@phdthesis{Teichgraeber2004, author = {Teichgr{\"a}ber, J{\"u}rgen}, title = {Aminosubstituierte Terphenyle als neue Leitstruktur f{\"u}r allostere Modulatoren muscarinischer M2-Acetylcholinrezeptoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8571}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die muscarinischen Rezeptoren sind ein wichtiger Bestandteil des parasympathischen Nervensystems. Sie geh{\"o}ren zur großen Gruppe der G-Protein-gekoppelten Rezeptoren, die nach ihrer Verwandtschaft in drei große Klassen eingeteilt werden k{\"o}nnen. Die muscarinischen Rezeptoren geh{\"o}ren zur Klasse A, den rhodopsin{\"a}hnlichen Rezeptoren. Durch die im Jahr 2000 vorgenommene Aufkl{\"a}rung der hochaufl{\"o}senden R{\"o}ntgenkristallstruktur des Rinderrhodpsins und die hohe Aminos{\"a}uresequenz{\"a}hnlichkeit der G-Protein-gekoppelten Rezeptoren hat man eine sehr gute Modellvorstellung {\"u}ber den Aufbau der G-Protein-gekoppelten Rezeptoren. Die Rezeptoren bestehen aus sieben transmembranalen Helices, die von drei intrazellul{\"a}ren und drei extrazellul{\"a}ren Loops stabilisiert werden. Bis heute konnten f{\"u}nf Rezeptorsubtypen gentechnisch klassifiziert werden, die sich durch ihre Gewebeverteilung und Funktion unterscheiden. Allen Subtypen ist eine hohe Sequenzhomologie im Bereich der orthosteren Bindungsstelle gemeinsam, so dass die Entwicklung von subtyp-spezifischen orthosteren Liganden sehr schwierig ist. Außer der orthosteren Bindungsstelle konnte noch eine weitere Bindungsstelle am muscarinischen Rezeptor identifiziert werden. Diese befindet sich weiter außerhalb im Rezeptor in einem Bereich, der {\"u}ber die f{\"u}nf Rezeptorsubtypen nicht sehr stark konserviert ist, so dass die Entwicklung von subtyp-spezifischen Liganden m{\"o}glich ist. An dieser zweiten Bindungsstelle binden allostere Modulatoren. Hierbei handelt es sich um Substanzen, die ohne den orthosteren Liganden keinen Effekt am Rezeptor ausl{\"o}sen, daf{\"u}r aber die Gleichgewichtsbindung des orthosteren Liganden beeinflussen k{\"o}nnen. Der Einfluss auf die Gleichgewichtsbindung geschieht wechselseitig und kann positiv, neutral oder negativ kooperativ sein. Zus{\"a}tzlich {\"u}ben allostere Modulatoren einen Effekt auf die Dissoziation des orthosteren Liganden aus. Die meisten bisher gefunden allosteren Modulatoren erniedrigen die Dissoziationsgeschwindikeit des orthosteren Liganden vom Rezeptor. Die Summe dieser Eigenschaften machen die allosteren Modulatoren sehr interessant f{\"u}r die Arzneimitteltherapie. Das Ziel dieser Arbeit war die Synthese strukturell neuer allosterer Modulatoren des muscarinischen Rezeptors unter Anwendung des postulierten Pharmakophormodells. Als Ausgangspunkt sollten gel{\"a}nderhelicale Molek{\"u}le dienen, die strukturell abgewandelt dieses Pharmakophormodell sehr gut erf{\"u}llen. Die gel{\"a}nderhelicalen Molek{\"u}le {\"a}hneln in ihrem dreidimensionalen Aufbau dem Gel{\"a}nder einer Wendeltreppe. Sie sind durch die Br{\"u}cken zwischen den aromatischen Bereichen sehr rigide Molek{\"u}le, so dass es nur wenige genau definierte Konformationen gibt. Grunds{\"a}tzlich k{\"o}nnen drei Atropisomere unterschieden werden, wobei zwei zueinander enantiomer sind. Geplant war die Synthese eine Reihe von terti{\"a}ren Aminen oder quart{\"a}ren Ammoniumsalzen. Die Synthese der Ausgangsverbindung konnte nach der Vorschrift von Kiupel erfolgen, war aber nur mit geringer Ausbeute m{\"o}glich. Deshalb wurde dieser Syntheseweg nicht weiterverfolgt. Als Alternative bot sich an, auf die Br{\"u}cken zwischen den aromatischen Ringen zu verzichten. Die so entstandenen Verbindungen sind weniger rigide und k{\"o}nnen sich deshalb gegebenenfalls besser an den Rezeptor anpassen. Grunds{\"a}tzlich k{\"o}nnen je nach Substitutionsmuster zwei Synthesewege verfolgt werden. Beide Varianten erf{\"u}llen das postulierte Pharmakophormodell. Der Aufbau des Grundger{\"u}stes erfolgt mittels einer nickelkatalysierten Grignard-Kupplung. Danach erfolgen eine Wohl-Ziegler-Seitenkettenbromierung und eine Verl{\"a}ngerung der Seitenkette im Sinne einer Alkylierung mittels Malons{\"a}urediethylester und einer Hilfsbase. Anschließend erfolgen die Decarboxylierung und die Umsetzung zum Amid, das zum Amin reduziert werden kann. Betrachtet man die Lage der Pharmakophorelemente so variiert der Abstand der positiv geladenen Stickstoffe je nach Konformation zwischen 5 {\AA} und 15 {\AA}, so dass ein weiter Bereich abgedeckt werden kann. Der Abstand der aromatischen Bereiche bleibt relativ stabil. Die pharmakologische Testung der Verbindungen auf ihre allostere Potenz und Affinit{\"a}t zum muscarinischen Rezeptor erfolgte in der Arbeitsgruppe von Prof. Mohr in Bonn. Hierzu werden Membranhomogenate vom Herzventrikelgewebe des Hausschweines verwendet. Diese enthalten mit großer Pr{\"a}valenz muscarinische M2-Rezeptoren. Es wurden Gleichgewichtsbindungs- und Dissoziationsexperimente durchgef{\"u}hrt. Bis jetzt sind noch nicht alle Verbindungen getestet worden. Die bisher getesteten Verbindungen weisen alle eine Affinit{\"a}t zum mit [3H]-N-Methylscopolamin besetzten muscarinischen M2-Rezeptor im mikro-molaren Bereich auf. Sie liegen damit im oberen Bereich der bisher synthetisierten allosteren Modulatoren. Das postulierte Pharmakophormodell konnte also mit Hilfe der synthetisierten Substanzen best{\"a}tigt werden.}, subject = {Muscarinrezeptor}, language = {de} } @phdthesis{Muth2004, author = {Muth, Mathias}, title = {Synthese und Charakterisierung allosterer Modulatoren muscarinischer M2-Rezeptoren : Strukturvariationen der Bis(ammonium)alkan-Verbindung W84}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8839}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung allosterer Modulatoren muscarinischer Rezeptoren. Allostere Modulatoren binden an einer topographisch anderen Stelle am Rezeptor als klassische orthostere Liganden und sind so in der Lage, die Dissoziation und die Assoziation orthosterer Agonisten und Antagonisten zu beeinflussen. Die f{\"u}nf Subtypen des Muscarinrezeptors M1-M5 unterscheiden sich vor allem in der Aminos{\"a}uresequenz der in den {\"a}ußeren Bereichen des Rezeptorproteins vorhandenen Loops, w{\"a}hrend sie im Bereich des Rezeptorkanals, wo die orthostere Bindungsstelle lokalisiert ist, eine hohe Sequenzhomologie aufweisen. Die gemeinsame Bindungsstelle allosterer Modulatoren des M2-Rezeptors befindet sich im weniger konservierten extrazellul{\"a}ren Bereich. Somit sind allostere Modulatoren in der Lage, spezifisch an einen der Rezeptorsubtypen zu binden. Als Leitstruktur zum Entwurf der im Rahmen dieser Arbeit synthetisierten Verbindungen diente die Bis(ammonium)alkanverbindung W84. {\"U}ber Weg A wurden Phthals{\"a}ure- bzw. Naphthals{\"a}ureanhydridderivate in einer Kondensationsreaktion mit dem entsprechenden N,N-Dimethylpropan-1,3-diaminderivat zum jeweiligen Phthalimidopropylaminderivat umgesetzt. Durch die Reaktion von zwei {\"A}quivalenten des Amins mit einem {\"A}quivalent 1,6-Dibromhexan wurden dann die symmetrischen W84-Derivate erhalten. Um die unsymmetrischen W84-Derivate zu erhalten, musste zun{\"a}chst das jeweilige Phthalimidopropylamin einseitig durch 1,6-Dibromhexan alkyliert werden. Im letzten Schritt wurden {\"a}quimolare Mengen der alkylierten Verbindung und eines Phthalimidopropylamins umgesetzt. Da sich im Laufe der Arbeit die Methylierung an Position 2 der Propylketten als kritische Position zur Beeinflussung der Gleichgewichtsbindung herausstellte, wurden Verbindungen hergestellt, die an den Propylketten Alkylgruppen verschiedener L{\"a}nge tragen. Aus diesem Grund wurde Syntheseweg B entwickelt. Zun{\"a}chst wurden in mehreren Stufen, ausgehend von Malons{\"a}urediethylester, einfach und zweifach mit Alkylgruppen substituierte 1,3-Dibrompropanderivate hergestellt. Diese wurden dann mit Kaliumphthalimid zu den jeweiligen 3-Brompropylphthalimidderivaten umgesetzt. Zwei {\"A}quivalente dieser 3-Brompropylphthalimide reagierten mit einem {\"A}quivalent N,N,N',N'-Tetramethyl-1,6-hexandiamin zu den entsprechenden symmetrischen W84-Derivaten. Ein weiteres Ziel der Arbeit bestand darin, stark fluoreszierende W84-Derivate herzustellen. Die fluoreszierenden Eigenschaften N-substituierter Naphthalimide k{\"o}nnten zur direkten Charakterisierung allosterer Interaktionen oder zur Verfolgung des „Rezeptor-Traffickings" mittels Fluoreszenzkorrelationsspektroskopie genutzt werden. Deshalb wurden in Position 3 und 4 des Naphthalimidringes des potentesten allosteren Modulators Aminogruppen eingef{\"u}hrt. Hexamethonio-Derivate beeinflussen in nennenswertem Maße bisher nur die Bindung von Antagonisten am M2-Rezeptor. Da die allostere und die orthostere Bindungsstelle r{\"a}umlich nahe zusammenliegen, wurde der Versuch unternommen, einen orthosteren Agonisten und einen allosteren Modulator in einem Molek{\"u}l miteinander zu verkn{\"u}pfen. Es wurden zw{\"o}lf Hybridmolek{\"u}le aus einem Teil des hochaffinen allosteren Modulators 3a und Derivaten des Muscarinagonisten Oxotremorin-M, verbunden durch aliphatische Spacer verschiedener L{\"a}nge, hergestellt. In pharmakologischen Testungen soll aufgekl{\"a}rt werden, ob es m{\"o}glich ist, mit einem Agonist/Alloster-Hybridmolek{\"u}l gleichzeitig die orthostere und die allostere Bindungsstelle zu besetzen. Die pharmakologische Testung der synthetisierten Verbindungen erfolgte durch Radioligandbindungsstudien. Der allostere Effekt der Testsubstanzen wurde indirekt {\"u}ber die Verz{\"o}gerung der Dissoziation des radioaktiv markierten orthosteren Antagonisten [3H]N-Methylscopolamin bestimmt. Alle bisquart{\"a}ren Testverbindungen weisen deutlich h{\"o}here Affinit{\"a}tswerte als die Leitstruktur W84 auf. Die 1,8-Naphthalimid-substituierten Verbindungen mit gleichzeitiger zweifacher Methylierung erwiesen sich als hochaffin und zugleich positiv kooperativ. Die wirksamste Verbindung dieser Serie ist Verbindung 3a (Naphmethonium), deren Affinit{\"a}t zum NMS-besetzten Rezeptor im einstelligen nanomolaren Bereich liegt (pEC50 = 8.36). Somit stellt Naphmethonium den potentesten in der Literatur bekannten allosteren Modulator des M2 Rezeptors dar. Mittels QSAR-Analysen wurden die ermittelten Affinit{\"a}ten zum freien und zum NMS-besetzten Rezeptor in Zusammenhang mit verschiedenen physikochemischen Parametern gebracht. Die Affinit{\"a}t zum NMS-besetzten Rezeptor der Verbindungen der Serie 2 l{\"a}sst sich mit hoher G{\"u}te durch das Volumen eines lateralen N-Methylimids in Kombination mit der benachbarten Dimethylierung der Propylkette beschreiben. Somit wird deutlich, dass zur Erzielung von positiver Kooperativit{\"a}t die Kombination aus einem hochaffinen aromatischen Imid in direkter Nachbarschaft zu einer 2,2-Alkylpropylkette essentiell ist.}, subject = {Muscarinrezeptor}, language = {de} } @phdthesis{Heinrich2004, author = {Heinrich, Tilman}, title = {Siliciumorganische Wirkstoffe : Synthese und pharmakologische Eigenschaften siliciumhaltiger Muscarin-, Dopamin- und alpha1-Rezeptor-Antagonisten sowie Ca2+-Kanal-Blocker}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11106}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Rahmen der vorliegenden Arbeit wurden neuartige siliciumhaltige Muscarinrezeptor-Antagonisten, Dopaminrezeptor-Antagonisten, Ca2+-Kanal-Blocker sowie alpha1-Rezeptor-Antagonisten synthetisiert, welche Sila-Analoga (C/Si-Austausch) bekannter organischer Pharmaka darstellen. Die C/Si-Analoga wurden pharmakologisch charakterisiert und damit Beitr{\"a}ge zur Thematik der C/Si-Bioisosterie geleistet.}, subject = {Muscarinrezeptor}, language = {de} }