@phdthesis{Hoffmann2003, author = {Hoffmann, Markus Fritz Heinrich}, title = {Induktion von Sekund{\"a}rstrukturen durch den Einbau von Alanyl-PNA in Peptide und Proteine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6308}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die Aktivit{\"a}t von Biooligomeren wird wesentlich beeinflusst von deren molekularer Struktur bzw. Konformation. Eine Einflussnahme auf die Struktur sollte deswegen auch mit einer Aktivit{\"a}tsver{\"a}nderung einhergehen, ein „Schalten" von Struktur somit ein „Schalten" von Aktivit{\"a}t nach sich ziehen. Alanyl-PNA ist ein Oligopeptid alternierender Konfiguration mit Nukleobasen in \&\#946;-Position der Alanyl-Einheiten, das durch Wasserstoffbr{\"u}ckenbildung und \&\#960;-Stacking mit einem komplement{\"a}ren Strang Paarungsduplexe mit \&\#946;-faltblattartiger linearer Struktur eingeht. Der Einbau eines Alanyl-PNA-Stranges in ein Peptid oder Protein und Zugabe des korrespondierenden Gegenstranges sollte zu einer lokalen Induktion eines \&\#946;-Faltblattes f{\"u}hren und strukturelle Ver{\"a}nderungen im Gesamtpeptid hervorrufen. Es kann dann von einem molekularen Schalter gesprochen werden. Im Rahmen dieser Arbeit wurde eine vom cyclischen Peptidantibiotikum Gramicidin S abgeleitete 18mer-Peptid-Alanyl-PNA-Chim{\"a}re 20 mit eingebautem Alanyl-PNA-Pentamer dargestellt. Es konnte mittels temperaturabh{\"a}ngiger UV-Spektroskopie gezeigt werden, dass sich bei Zugabe des komplement{\"a}ren Gegenstranges nichtkovalente Duplexe bilden. CD-spektroskopische Untersuchungen dieses Dimers lieferten keine eindeutigen Beweise f{\"u}r das vorliegen eines \&\#946;-Faltblattes. Es konnte anhand des humanen Interleukins 8 gezeigt werden, dass der Einbau von Alanyl-PNA durch die Technik der native chemical ligation in gr{\"o}ßere Peptide m{\"o}glich ist. Hierf{\"u}r wurde der N-terminale Thioester 31 des humanen Interleukins hIL8(1-55) durch Expression des Fusionsproteines in E.coli und Expressed Protein Ligation dargestellt. Nach Umsetzung des Thioesters 31 mit einem Alanyl-PNA-Peptid-Hybrid 29, das N-terminal mit einem freien Cystein substituiert ist, wurde durch native chemical ligation ein von dem humanen Interleukin 8 abgeleitetes 77 Aminos{\"a}uren enthaltendes Peptid 30 mit eingebauter Alanyl-PNA erhalten. Dar{\"u}ber hinaus wurden mit keinem, einem oder zwei Lysinen substituierte Alanyl-PNA-Hexamere dargestellt und Strukturuntersuchungen unterworfen. Es konnte mittels temperaturabh{\"a}ngiger UV-Spektroskopie gezeigt werden, dass der Einbau zweier Lysine sowohl die L{\"o}slichkeit als auch die Bildungskinetik ver{\"a}ndert, die Stabilit{\"a}t (Tm-Wert) der Duplexe jedoch unver{\"a}ndert l{\"a}sst. Diese Hexamere wurden Kristallisationsversuchen unterworfen, bisher konnten noch keine Kristalle erhalten werden. Basierend auf den im Rahmen dieser Arbeit erhaltenen Ergebnissen sollte es in Zukunft dar{\"u}ber hinaus m{\"o}glich sein, genaueren Aufschluss {\"u}ber die Struktur von Alanyl-PNA zu erhalten. Die Erh{\"o}hung der L{\"o}slichkeit von Alanyl-PNA durch Einbau zweier Lysine erm{\"o}glicht nicht nur weitere Kristallisationsversuche, sondern man gelangt auch in Konzentrationsbereiche, in denen NMR-Untersuchungen an Alanyl-PNA m{\"o}glich werden, die bisher aufgrund zu schlechter L{\"o}slichkeit zu keinen zufrieden stellenden Ergebnissen gef{\"u}hrt haben. Durch weitere Optimierung der native chemical ligation und Bereitstellung gr{\"o}ßerer Mengen von Interleukin 8 Derivaten mit eingebauter Alanyl-PNA sollte es in Zukunft m{\"o}glich sein, den Einfluss des komplement{\"a}ren Alanyl-PNA-Stranges auf die Struktur des Gesamtsystems und dessen biologischer Aktivit{\"a}t zu untersuchen. Durch Variation und Optimierung der Sequenz und des {\"o}rtlichen Einbaus der Alanyl-PNA kann so vielleicht das Fernziel eines molekularen strukturellen Schalters f{\"u}r Peptide bzw. Proteine erreicht werden. Ebenso ist es denkbar, dass durch den Einbau von Alanyl-PNA in zwei verschiedene Peptide bzw. Proteine nichtkovalente Protein-Protein-Komplexe erhalten werden k{\"o}nnen.}, subject = {Peptide}, language = {de} }