@phdthesis{Stoy2022, author = {Stoy, Andreas}, title = {Darstellung, Charakterisierung und Reaktivit{\"a}t von NHC-stabilisierten 1,2-Dihalogendiborenen}, doi = {10.25972/OPUS-23781}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237818}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Im Rahmen der vorliegenden Arbeit konnte eine Reihe symmetrischer und asymmetrischer Tetrahalogendiboran(4)-Addukte realisiert werden. Die symmetrischen Brom-substituierten Vertreter 19 und 102-107 waren durch quantitativen Ligandenaustausch der schwach gebundenen Lewis-Base SMe2 von 101 zug{\"a}nglich. Im Falle der IDip-stabilisierten Addukte 108 bzw. 109a/b gelang die Darstellung in sehr guten Ausbeuten durch direkte Umsetzung von freiem Carben mit den Tetrahalogendiboran(4)-Vorstufen 1 (X = Cl) bzw. 2 (X = I). Die asymme¬trischen Vertreter 113a-116b konnten durch sukzessive Adduktbildung ausgehend von 1 bzw. 6 mit cAAC und dem jeweiligen NHC bei tiefen Temperaturen (-78 °C) in moderaten bis guten Ausbeuten dargestellt werden. Nachfolgende Reduktionsversuche der asymmetrischen Addukte 113a/b und 114b-116b waren von m{\"a}ßigem Erfolg gepr{\"a}gt. Als Reduktionsmittel wurden Alkali- bzw. Erdalkalimetalle, Interkallationsverbindungen und {\"U}bergangsmetallkomplexe eingesetzt. Zwar war in allen F{\"a}llen eine deutliche Farb{\"a}nderung beobachtbar, die, zusammen mit den beobachteten Resonanzen in den 11B-NMR-Spektren, die Synthese von asymmetrischen Diborenen nahelegten, jedoch gelang die Isolierung der Diborene nicht. Hierbei gestaltete sich die Abtrennung der gebildeten Nebenprodukte als problematisch. Deutlich selektiver verliefen hingegen die Reduktionen der symmetrischen Tetrahalogen-diboran(4)-Bis(Addukte) mit NaNaph bei tiefen Temperaturen (-78 °C). Hierbei gelang es, das Portfolio der bereits bekannten Vertreter dieser Substanzklasse zu erweitern. So konnten die Brom-substituierten Diborene 126-128 erstmals vollst{\"a}ndig charakterisiert werden. Der Einfluss der Halogenatome auf die chemischen und physikalischen Eigenschaften der Diborene wurde ferner an zwei Beispielen der IDip-stabilisierten Diborene 129 und 130 untersucht. Bei identischem NHC, aber unterschiedlichen Halogenen, konnten die Eigenschaften der Diborene 21, 129 und 130 n{\"a}her untersucht und miteinander verglichen werden. Besonders deutlich werden die Redoxeigenschaften der Diborene von der Art des gebundenen Halogens beeinflusst, wie cyclovoltammetrische Untersuchungen belegen. Alle NHC-stabilisierten 1,2 Dihal¬ogen¬diborene konnten ferner anhand ihrer physikalischen Eigenschaften eingeordnet und miteinander verglichen werden. Neben der Synthese und Charakterisierung neuartiger Diborene wurden auch verschiedene Reaktivit{\"a}tsstudien durchgef{\"u}hrt. So konnten die Diborene 21, 123, 126 und 129 mit CO2 unter milden Bedingungen umgesetzt werden, wobei verschiedene Reaktionsprodukte nachgewiesen wurden. Der initiale Schritt umfasste in allen F{\"a}llen eine [2+2]-Cycloaddition die zu den Dibora-β-Lactonen 131a-134a f{\"u}hrte, von denen 131a und 132a vollst{\"a}ndig charakterisiert werden konnten. Im weiteren Reaktionsverlauf wurden jedoch Isomerisierungsreaktionen von 132a-134a bei Raum¬temperatur beobachtet, wobei die 2,4 Diboraoxetan 3 one 132b-134b isoliert wurden. Bedingt durch die verh{\"a}ltnism{\"a}ßig langsame Umsetzung von 21 zu 132a konnte die [2+2] Cyclo¬addition mittels 1H-VT-NMR-Spektroskopie verfolgt werden, wobei die R{\"u}ckgrat¬protonen der NHCs als selektive Sonde dienten. Eine bemerkenswert hohe Stabilit{\"a}t konnte f{\"u}r 131a bei Raumtemperatur beobachtet werden, bei der keine Anzeichen einer Umlagerung nachweisbar waren. Die angefertigten quantenchemischen Untersuchungen zum Reaktions¬mechanismus legen eine h{\"o}here Energiebarriere des Schl{\"u}sselschrittes der Umlagerungs¬reaktion f{\"u}r 131a als f{\"u}r 132a nahe, womit die Stabilit{\"a}t von 131a erkl{\"a}rbar ist. Ferner konnten beim Erhitzen von 131a f{\"u}r 16 Stunden auf 60 °C kurzlebige Intermediate in Form eines Oxoborans und Borylens, die im Laufe der Isomerisierungsreaktion der Dibora-β-Lactonen zu den 2,4 Diboraoxetan 3 onen auftreten, 11B NMR-spektroskopisch nachgewiesen werden. Hierdurch wurde ein weiteres Indiz gewonnen, dass die Richtigkeit des postulierten Reaktionsmechanimus verdeutlicht. Die reduzierende Wirkung der Diborene konnte mit der Darstellung von Radikalkationen demonstriert werden. Hierbei erfolgte die Umsetzung der Diborene 21, 123-126 und 128 mit [C7H7][BArF4] zu 138-143 in guten bis sehr guten Ausbeuten. Die gebildeten Radikale konnten vollst{\"a}ndig charakterisiert werden und sind wegen ihrer Eigen¬schaften gut mit bereits literaturbekannten Vertretern dieser Substanzklasse vergleichbar. Versuche die Radikalkationen durch Umsetzung der Diborene mit [C7H7][BF4] darzustellen scheiterten an der Zersetzung w{\"a}hrend der Aufarbeitung, wodurch die Wichtigkeit des schwach koordinierenden Anions verdeutlich wird. Entgegen der Erwartungen wurden beim Vergleich der ESR-Spektren der dargestellten Radikalkationen mit bekannten Analoga deutlich unterschiedliche giso-Werte ermittelt, die auf den starken Einfluss der Bromatome zur{\"u}ckzuf{\"u}hren sind. Des Weiteren war es m{\"o}glich, eine Korrelation zwischen den Strukturparametern in der Festphase und den UV/Vis-Absorptionsmaxima in L{\"o}sung nachzuweisen, wonach f{\"u}r diejenigen Radikale die st{\"a}rkste Blauverschiebung beobachtet wurde, die den gr{\"o}ßten Diederwinkel α, zwischen den B2Br2-Ebenen und den CN2C2-Carben-ebenen, aufwiesen. In weiteren Studien wurden die Redoxeigenschaften der Diborene durch Umsetzung von 21 und 123-125 mit elementaren Chalkogenen unter milden Reaktionsbedingungen untersucht. So konnten durch Umsetzung der Diborene mit elementarem Schwefel die Diborathiirane 144-147 in moderaten bis guten Ausbeuten erhalten werden. Trotz eines großen {\"U}berschusses an Schwefel wurde aber keine vollst{\"a}ndige BB-Bindungsspaltung beobachtet. Auf analoge Weise wurden die Diboraselenirane 148, 150 und 151 durch Umsetzung mit rotem Selen in moderaten bis guten Ausbeuten synthetisiert. Deutliche Unterschiede zeigten sich aber beim IDep-stabilisierten Diboren 123, das ein radikalisches Seleniran ausbildete. {\"U}bersch{\"u}s¬siges Selen beg{\"u}nstigt vermutlich eine Folgeoxidation des in situ gebildeten Diboraselenirans, die jedoch f{\"u}r die anderen Verbindungen dieser Substanzklasse nicht beobachtbar war. Interessanterweise wurde bei allen Dipp-substituierten Verbindungen (Diborathiirane 144 und 146 sowie Dibora¬selenirane 148 und 151) das Fehlen einer Dipp-Gruppe der stabilisierten NHC-Basen im 1H NMR-Spektrum nachgewiesen. Dieser Umstand konnte durch eine eingeschr{\"a}nkte Rotation um die BC-Bindungsachse mittels 1H-VT-NMR-Spektrum aufgekl{\"a}rt werden, wobei die Rotationsbarriere exemplarisch f{\"u}r 144 13.9 ± 1 kcal/mol betr{\"a}gt. Eine bemerkenswerte Reaktivit{\"a}t der 1,2-Dibromdiborene 21 und 123-126 wurde gegen{\"u}ber hetero¬aroma¬tischer Stickstoffbasen beobachtet. Mit einem großen {\"U}berschuss an Pyridin konnte ein Bromidanion aus den Diborenen verdr{\"a}ngt werden, wodurch die Diborenkationen 154-158 in moderaten bis guten Ausbeuten erhalten wurden. Die Abtrennung der dabei unvermeidlich gebildeten NHC-Salze gestaltete sich als schwierig, allerdings gelang es, nach einer in situ Deprotonierung mit NaHMDS die freien NHCs zu entfernen. Versuche der Deri-vatisierung mit anderen aromatischen Basen wie 2- bzw. 4-Picolin, Chinolin oder 2,2'-und 4,4'-Bipyridin scheiterten. Erfolgreich konnte DMAP eingesetzt werden, wodurch es m{\"o}glich war, die Diborenkationen 160-162 in guten bis sehr guten Ausbeuten zu erhalten. Interessanterweise zeigen 154-158 teils deutliche solvatochrome Absorptions¬eigenschaften in den UV/Vis-Spektren. Im Laufe der Umsetzung von 125 mit Pyridin konnte durch angepasste Reaktions¬bedingungen das Dikation 159 in moderaten Ausbeuten isoliert werden. Dessen bemerkenswerte Stabilit{\"a}t zeigte sich durch eine ausgepr{\"a}gte Widerstands¬f{\"a}higkeit gegen{\"u}ber Sauerstoff und Luftfeuchtigkeit {\"u}ber mehrere Wochen. Weiterf{\"u}hrende Unter¬suchungen der Festk{\"o}rperstruktur von 159 zeigen Bindungsparameter, die trotz der ionischen Natur der Verbindung, nur geringf{\"u}gig von denen des neutralen Diborens 125 abweichen. Mittels Raman-Spektroskopie konnten des Weiteren die BB-Bindungsst{\"a}rke in 159 n{\"a}her bestimmt werden, die mit einer Kraftkonstante von 470 N/m nahezu identisch zu der des neutralen Dibores (465 N/m) ist, was R{\"u}ckschl{\"u}sse auf die Lokalisierung der positiven Ladungen auf den Pyridinringen zul{\"a}sst. Aus diesem Grund kann Verbindung 159 als bis dato einziges Beispiel eines luft- und feuchtigkeitsstabilen Diborens bezeichnet werden.}, subject = {Bor}, language = {de} } @phdthesis{Boehnke2019, author = {B{\"o}hnke, Julian}, title = {Reaktivit{\"a}t niedervalenter, Carben-stabilisierter Bor-Bor-Mehrfachbindungssysteme}, doi = {10.25972/OPUS-16333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Im Rahmen dieser Arbeit war es m{\"o}glich, vielf{\"a}ltige Reaktivit{\"a}ten des Diborakumulens (7) und davon abgeleiteter Verbindungen zu untersuchen. H{\"a}ufig begr{\"u}ndet in den bemerkenswerten elektronischen Eigenschaften der verwendeten CAAC-Liganden, konnten neuartige und teilweise ungew{\"o}hnliche Bindungsmodi an niedervalenten Borspezies beobachtet werden. Der Einfluss der starken σ-Donor-F{\"a}higkeiten und der hohen π-Acidit{\"a}t der cyclischen (Alkyl)(amino)carbene spiegeln sich hierbei in vergleichenden Reaktivit{\"a}tsstudien mit den entsprechenden NHC-stabilisierten Bor-Bor-Mehrfachbindungssystemen wider. Zun{\"a}chst wurde jedoch auf die Synthese weiterer Diborakumulene eingegangen und am Beispiel der Bis(CAACCy)-stabilisierten B2-Einheit (12) erfolgreich durchgef{\"u}hrt. Mit vergleichbaren 11B-NMR-Verschiebungen und Bindungsl{\"a}ngen unterscheidet sich die Verbindung in ihren elektronischen Eigenschaften kaum von B2(CAAC)2 (7), welches aufgrund der besseren Zug{\"a}nglichkeit f{\"u}r die Reaktivit{\"a}tsstudien eingesetzt wurde. Grundlegende Studien zum Redoxverhalten des Diborakumulens zeigten die vollst{\"a}ndige, oxidative Spaltung der Bor-Bor-Bindung mit Chlorgas unter Ausbildung eines CAAC-stabilisierten Bortrichlorid-Fragments. Die Arbeiten zum Bis(boraketen) 17 und die Darstellung des Bis(boraketenimins) 18 durch die Umsetzung des Diborakumulens mit Kohlenstoffmonoxid bzw. geeigneten Isocyaniden, stellte einen ersten gr{\"o}ßeren Teilbereich dieser Arbeit dar. Durch die enorme π-R{\"u}ckbindung in die CAAC-Liganden und die CO-Liganden aus der elektronenreichen B2-Einheit kommt es in 17 zu einer Aufweitung der B-B-Bindung und orthogonal zueinander stehenden Molek{\"u}lh{\"a}lften. Im weiteren Verlauf konnte ein Mechanismus f{\"u}r die Addition von CO an B2(CAAC)2 gefunden werden, in dem aufgrund hoher energetischer Barrieren eine Umsetzung zum Bis(boralacton) - einer Spezies, die f{\"u}r die Reaktion von Kohlenstoffmonoxid mit NHC-stabilisierten Diborinen gefunden wurde - unterbunden wird. Die elektronischen und strukturellen Unterschiede zwischen Diborinen und dem Diborakumulen 7 konnten so erstmals anhand definierter Reaktionsbedingungen evaluiert werden. Die Reaktion von 7 mit zwei {\"A}quivalenten tert-Butylisocyanid f{\"u}hrte zur Bildung eines Bis(boraketenimins). {\"A}hnlich wie im Bis(boraketen) 17 kommt es auch hier unter anderem zu einer starken π-R{\"u}ckbindung in den Isocyanidliganden einhergehend mit der Aufweitung der B-B-Bindung und orthogonal zueinander stehenden Molek{\"u}lh{\"a}lften. Die Thermolyse der Verbindung f{\"u}hrte zu einer Abspaltung zweier tert-Butylradikale und zur Bildung des ersten, strukturell charakterisierten Dicyanodiborens 20. Das Dicyanodiboren zeigte hier eine strukturelle Besonderheit: W{\"a}hrend ein CAAC-Ligand in Konjugation mit dem π-System der B2-Einheit steht, zeigt der zweite CAAC-Ligand eine orthogonale Orientierung zu diesem, was vermutlich zu einer Polarisierung der B=B-Doppelbindung f{\"u}hrt und potentiell hochinteressante Reaktivit{\"a}ten erm{\"o}glicht. So f{\"u}hrte die Umsetzung von 20 mit Kohlenstoffmonoxid zur Spaltung der B-B-Bindung und Insertion eines µ2-gebundenen CO-Molek{\"u}ls in die BB-Einheit. Die Tatsache, dass ein {\"a}hnliches Reaktionsverhalten bisher nur vom ebenfalls CAAC-stabilisierten Dihydrodiboren 22 bekannt war (vide infra), demonstrierte an diesem Beispiel eindeutig die bemerkenswerten F{\"a}higkeiten von CAACs reaktive, niedervalente Hauptgruppenelementverbindungen zu stabilisieren. Die Reaktivit{\"a}t des Diborakumulens 7 gegen{\"u}ber Diwasserstoff stellte einen weiteren, großen Teilaspekt dieser Arbeit dar. Das R{\"u}hren von 7 unter einer H2-Atmosph{\"a}re f{\"u}hrte zur 1,2-Addition des H2-Molek{\"u}ls an die B2-Einheit unter Ausbildung eines trans-st{\"a}ndigen, Basen-stabilisierten Dihydrodiborens 22. Im Gegensatz zum Dicyanodiboren (20) handelt es sich bei 22 um eine C2-symmetrische Verbindung, dessen π-System im HOMO aufgrund der π-Acidit{\"a}t der CAAC-Liganden {\"u}ber das gesamte C-B-B-C-Grundger{\"u}st delokalisiert ist. Die Hydrierung wurde ebenfalls mit hochreinem D2 durchgef{\"u}hrt, um eine Hydridabstraktion aus dem L{\"o}sungsmittel auszuschließen. DFT-Berechnungen konnten zudem die Bor-gebundenen Wasserstoffatome als Hydride klassifizieren und den Mechanismus der Addition von Diwasserstoff an die B2-Einheit ermitteln. Mit einem berechneten, exothermen Reaktionsverlauf stellt die Umsetzung von 7 zu 22 auf diesem Weg das erste Beispiel einer nicht katalysierten Hydrierung einer homodinuklearen Mehrfachbindung der 2. Periode dar. Das CAAC-stabilisierte Dihydrodiboren 22 zeigte im Verlauf dieser Arbeit vielf{\"a}ltige Bindungsmodi aus der Umsetzung mit Kohlenstoffmonoxid. Unter anderem die Eigenschaft von CAACs, eine 1,2-Wasserstoffwanderung von angrenzenden BH-Einheiten auf das Carbenkohlenstoffatom zu beg{\"u}nstigen, f{\"u}hrte zur Ausbildung verschiedener Tautomere. W{\"a}hrend das Produkt aus der formalen Addition und Insertion von zwei CO-Molek{\"u}len (24) lediglich unter CO-Atmosph{\"a}re stabil war, konnte unter Argonatmosph{\"a}re ein Tautomerengemisch von 25 mit intakter Bor-Bor-Bindung und einer Boraketeneinheit isoliert werden. W{\"a}hrend dieser Prozess vollst{\"a}ndig reversibel war, f{\"u}hrte das Erhitzen von 25 zur Bildung eines Alkylidenborans (26), welches ebenfalls in zwei tautomeren Formen vorlag. Dar{\"u}ber hinaus konnte die Bildung einer weiteren Spezies (27) in geringen Ausbeuten beobachtet werden, die aus der vollst{\"a}ndigen Spaltung eines CO-Fragments und der Bildung einer intramolekularen C≡C-Dreifachbindung resultierte. VT-NMR- und Korrelationsexperimente, Kristallisationen unter verschiedenen Atmosph{\"a}ren, Schwingungsspektroskopie sowie die mechanistische Analyse der Umsetzungen basierend auf DFT-Berechnungen erm{\"o}glichten hier einen tiefen und detaillierten Einblick in die zugrunde liegenden Prozesse. Die thermische Umsetzung des Dihydrodiborens 22 mit Acetylen f{\"u}hrte wider Erwarten nicht zur Cycloaddition an die B=B-Doppelbindung, sondern zur Insertion in diese. Das erhaltene Produkt 28 zeigte eine C2-symmetrische Struktur und durchg{\"a}ngig sp2-hybridisierte Kohlenstoff- und Borzentren entlang der Hauptachse. Eine DFT-Studie ergab ein konjugiertes π-System, dass dem 1,3,5-Hexatrien stark {\"a}hnelte. Eine weitere Umsetzung von 22 mit zwei {\"A}quivalenten Diphenyldisulfid f{\"u}hrte ebenfalls zur Spaltung der B=B-Doppelbindung und zur Ausbildung eines CAAC-stabilisierten, sp3-hybridisierten Monoborans. Das Diborakumulen 7 konnte in zwei weiteren Reaktivit{\"a}tsstudien selektiv mit Kohlenstoffdioxid und Aceton umgesetzt werden. Die Reaktion von B2(CAAC)2 mit zwei CO2-Molek{\"u}len f{\"u}hrte zur Ausbildung einer Spezies mit einer Boraketenfunktionalit{\"a}t und einem Bors{\"a}ureesterderivat (30). F{\"u}r die Aktivierung von Kohlenstoffdioxid an unpolaren Mehrfachbindungen gab es bisher kein Beispiel in der Literatur, sodass diese mechanistisch untersucht wurde. Hier erfolgte die Reaktion {\"u}ber eine ungew{\"o}hnliche, sukzessive [2+1]-Cycloaddition an die koordinativ unges{\"a}ttigten Boratome mit einem insgesamt stark exergonen Verlauf. Die Umsetzung von 7 mit Aceton f{\"u}hrte zur Ausbildung eines f{\"u}nfgliedrigen Heterocyclus mit einer C=C-Doppelbindung und asymmetrisch verbr{\"u}ckter Bor-Bor-Bindung mit einem orthogonal zum Heterocyclus stehenden μ2-Hydrid. Interessanterweise zeigte hier eine vergleichende Studie von Tobias Br{\"u}ckner an einem SIDep-stabilisierten Diborin bei einer analogen Reaktionsf{\"u}hrung ein 1,2-Enol-Additionsprodukt, sodass der zugrunde liegende Reaktionsmechanismus ebenfalls untersucht wurde. W{\"a}hrend das 1,2-Enol-Additionsprodukt als Intermediat zur Bildung von 31 beschrieben werden konnte, f{\"u}hrten moderate Energiebarrieren und ein deutlich exergoner Reaktionsverlauf im Fall des Diborakumulens zu einer doppelten Acetonaktivierung. F{\"u}r 31 konnte dar{\"u}ber hinaus ein Isomerengemisch beobachtet werden, das nach der Bildung nicht mehr ineinander {\"u}berf{\"u}hrt werden konnte. Die Reaktion des Diborakumulens mit M{\"u}nzmetallhalogeniden ergab f{\"u}r die Umsetzung von 7 mit drei {\"A}quivalenten Kupfer-(I)-chlorid-Dimethylsulfidaddukt eine T-f{\"o}rmige Koordination von drei CuCl-Fragmenten an die B2-Einheit (33). Setzte man das Diborakumulen 7 mit einem {\"A}quivalent IMeMe um, bildete sich das heteroleptisch substituierte Mono-Basenaddukt 34. Dieses zeigte eine thermische Labilit{\"a}t, sodass sich nach einem Zeitraum von 24 Stunden bei erh{\"o}hter Temperatur selektiv das Produkt einer CH-Aktivierung isolieren ließ. Das gleiche Produkt (35) konnte ebenfalls durch die Zugabe einer Lewis-S{\"a}ure (Galliumtrichlorid) zu 34 nach kurzer Zeit bei Raumtemperatur erhalten werden. Setzte man 34 mit einem weiteren {\"A}quivalent IMeMe um, so bildete sich das Bis(IMeMe)-Addukt des Diborakumulens 36, das zun{\"a}chst an das Bis(CO)-Addukt 17 erinnerte und durch die hohe sterische Spannung im System eine stark aufgeweitete Bor-Bor-Bindung besitzt. Die Reaktion von 34 gegen{\"u}ber Kohlenstoffmonoxid lieferte das heteroleptisch substituierte Basenaddukt 37. Das elektronenreiche Boratom des Boraketenstrukturfragments f{\"u}hrt hier zu einer erheblichen π-R{\"u}ckbindung in den CO-Liganden, der die niedrigsten, zu diesem Zeitpunkt jemals beobachteten Wellenzahlen f{\"u}r die CO-Schwingung in einer derartigen Funktionalit{\"a}t aufweist. Eine abschließende Umsetzung des Mono-Basenaddukts 34 mit Diwasserstoff f{\"u}hrte zur spontanen Hydrierung beider Boratome und zur Spaltung der Bor-Bor-Bindung. Die Reaktionsmischung zeigte nach erfolgter Reaktion ein 1:1-Verh{\"a}ltnis aus einem CAAC-stabilisierten BH3-Fragment 39 und einem zweifach Basen-stabilisierten BH-Borylen 38. Die Spaltung einer Bor-Bor-(Mehrfach)-Bindung zur Synthese von heteroleptisch Lewis-Basen-stabilisierten Borylenen stellte dabei einen bisher nicht bekannten Zugang zu dieser Verbindungsklasse dar. Ein sehr großer Teilbereich dieser Arbeit besch{\"a}ftigte sich mit der Synthese und Reaktivit{\"a}t von Diborabenzol-Derivaten. Setzte man das Diborakumulen 7 mit Acetylen um, so konnte die Bildung eines CAAC-stabilisierten 1,4-Diborabenzols beobachtet werden. Das planare Grundger{\"u}st, C-C- und B-C-Bindungen im Bereich von (partiellen) Doppelbindungen, stark entschirmte Protonen des zentralen B2C4H4-Heterocyclus, Grenzorbitale, die denen des Benzols {\"a}hneln, sowie negative NICS-Werte stellen 42 als einen 6π-Aromaten dar, der mit seinem energetisch stark destabilisierten HOMO als elektronenreicher Ligand in der {\"U}bergangsmetallchemie eingesetzt werden konnte (vide infra). Die Reaktion von B2(CAAC)2 mit Propin bzw. 2-Butin lieferte hingegen 2π-aromatische, paramagnetische Verbindungen mit Schmetterlingsgeometrie aus der [2+2]-Cycloaddition an die Bor-Bor-Bindung und anschließender Umlagerung zu den thermodynamisch stabileren 1,3-Diboreten. Die weitere, thermisch induzierte Umsetzung von 40 und 41 mit Acetylen erm{\"o}glichte die Darstellung der Methyl-substituierten 1,4-Diborabenzol-Derivate 43 und 44. Um die Eigenschaften des CAAC-stabilisierten 1,4-Diborabenzols zu analysieren, wurde sowohl die Redoxchemie von 42 als auch dessen potentieller Einsatz als η6-Ligand an {\"U}bergangsmetalle der Chromtriade untersucht. Es zeigte sich, dass durch die Reduktion mit Lithium die Darstellung des zweifach reduzierten Diborabenzols 45 m{\"o}glich war. Die Ausbildung eines quinoiden Systems f{\"u}hrte hier zu einem Isomerengemisch aus cis/trans-konfigurierten CAAC-Liganden. Die Umsetzung der isolierten Verbindung mit 0.5 {\"A}quivalenten Zirkoniumtetrachlorid f{\"u}hrte quantitativ zur Bildung von 42 und demonstrierte somit das hohe Reduktionspotential der dilithiierten Spezies. Durch die Reaktion von 42 mit [(MeCN)3M(CO)3] (M = Cr, Mo, W) gelang dar{\"u}ber hinaus die Darstellung von 18-Valenzelektronen-Halbsandwichkomplexen. Die Koordination des elektronenreichen Heteroarens an die Metalltricarbonyl-Segmente lieferte die niedrigsten, zu diesem Zeitpunkt je beobachteten Carbonylschwingungen f{\"u}r [(η6-aren)M(CO)3]-Komplexe, die durch den starken, elektronendonierenden Einfluss des Liganden auf das Metall und die daraus resultierende erhebliche R{\"u}ckbindung in die antibindenden π*-Orbitale der CO-Liganden hervorgerufen werden. DFT-Analysen der Verbindungen zeigten zudem im Vergleich zu [(η6-C6H6)Cr(CO)3] signifikant h{\"o}here Bindungsenergien zwischen dem Metallfragment und dem 1,4-Diborabenzol und unterstreichten zusammen mit weiteren spektroskopischen und theoretischen Analysen die bemerkenswerten Eigenschaften von 42 als {\"u}beraus stark elektronendonierender Ligand. Letztlich gelang in einer Reaktivit{\"a}tsstudie am Wolframkomplex 48 die Darstellung eines Mono-Radikalanions (49), das vermutlich das erste Beispiel eines monoanionischen Aren-Metalltricarbonyl-Komplexes der Gruppe 6 darstellt. Ein abschließendes, großes Thema dieser Arbeit besch{\"a}ftigte sich mit der Synthese von Biradikalen aus verdrehten Doppelbindungen und dem Vergleich mit den verwandten, diamagnetischen Diborenen. Die Reaktion des Diborakumulens mit verschieden substituierten Disulfiden und einem Diselenid f{\"u}hrte zur Ausbildung von persistenten, paramagnetischen, biradikalischen Spezies durch die 1,2-Addition an die Bor-Bor-Mehrfachbindung. W{\"a}hrend die Addition der Substrate an das IDip-stabilisierte Diborin 5 geschlossenschalige, diamagnetische Diborene mit coplanarer Anordnung der Substituenten lieferte, konnte nach der Addition der Substrate an das Diborakumulen 7 stets eine Bor-Bor-Einfachbindung mit orthogonaler Ligandenorientierung festgestellt werden. ESR-spektroskopische und magnetische Messungen der Proben ergaben f{\"u}r 51e einen Triplett-Grundzustand bei Raumtemperatur und durch den captodativen-Effekt der π-Donor Stickstoffatome und der π-Akzeptor Boratome eine erhebliche Delokalisierung der ungepaarten Elektronen in die Liganden. Detaillierte theoretische Studien konnten dar{\"u}ber hinaus zeigen, dass die Singulett-Zust{\"a}nde der synthetisierten Diborene stabiler als die Triplett-Zust{\"a}nde sind und dass die Triplett-Zust{\"a}nde der paramagnetischen Verbindungen 51a,b,e stabiler als die entsprechenden Singulett-Zust{\"a}nde sind. Die Verbindungen liegen stets in ihrem Grundzustand vor und lieferten somit hochinteressante Modellsysteme zum tieferen Verst{\"a}ndnis dieser Verbindungsklasse.}, subject = {Bor}, language = {de} } @phdthesis{Molitor2016, author = {Molitor, Sebastian}, title = {Stabilisierung und Reaktivit{\"a}t carbenoider Verbindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137607}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Ziel der vorliegenden Doktorarbeit war die Stabilisierung und Isolierung von Alkalimetall-Carbenoiden sowie die Entwicklung neuer Anwendungsgebiete dieser Verbindungen. Dabei konzentrierte sich der erste Teil auf die thermische Stabilit{\"a}t und die Kontrolle der Reaktivit{\"a}t dieser Verbindungen, w{\"a}hrend der zweite Teil die Stabilit{\"a}ts-Reaktivit{\"a}ts-Beziehung der Verbindungsklasse beinhaltet. Stabilit{\"a}t von M/X-Carbenoiden Ein Schwerpunkt lag dabei auf der Synthese, den Eigenschaften und der Reaktivit{\"a}t Silyl-substituierter Carbenoide. Diese wurden durch Deprotonierung der Fluor- und Chlorvorstufen mit einer geeigneten Alkalimetall-Base zun{\"a}chst in situ erzeugt (Abb. 4.1), da sie trotz stabilisierender Gruppen thermisch instabil waren und sich meist bei Temperaturen {\"u}ber -40 °C zersetzten. Durch die Einf{\"u}hrung der Thiophosphoryl- und Silylgruppe konnten erstmals systematische Studien zu den Eigenschaften und Stabilit{\"a}ten der Carbenoide mit unterschiedlichen M/X-Kombinationen durchgef{\"u}hrt werden. Hierbei gelang es neben dem Einfluss der Abgangsgruppe auch den Einfluss der unterschiedlichen Alkalimetalle zu untersuchen, welcher in der Literatur bisher nahezu unbeachtet geblieben war. Abb. 4.1. (oben) Synthese von 52-M und 53-M; (unten) Molek{\"u}lstrukturen der Carbenoide 53-Na und 53-K im Festk{\"o}rper. Durch NMR-spektroskopische Untersuchungen konnte die erfolgreiche Synthese der Fluor- bzw. Chlor-Carbenoide 52-M und 53-M (mit M = Li, Na, K) nachgewiesen werden. Diese zeigten im 31P{1H}-NMR-Spektrum nur eine geringe Verschiebung verglichen mit den protonierten Vorstufen, allerdings best{\"a}tigte das Fehlen des Signals f{\"u}r das Br{\"u}ckenwasserstoffatom im 1H-NMR-Spektrum die erfolgreiche Synthese der Verbindungen. Das Signal des carbenoiden Kohlenstoffatoms im 13C{1H}-NMR-Spektrum zeigte bei den Chlor-Carbenoiden nur eine geringe {\"A}nderung verglichen mit der protonierten Ausgangsverbindung. Die um etwa 35 Hz erh{\"o}hte 1JCP-Kopplungskonstante ließ jedoch auf einen erh{\"o}hten s-Charakter der P-C-Bindung und damit auf ein sp2-hybridisiertes Kohlenstoffatom schließen. Durch VT-NMR-Messungen konnte die thermische Instabilit{\"a}t der Carbenoide best{\"a}tigt und die genauen Zersetzungstemperaturen bestimmt werden. Dabei zeigte sich, dass 53-Li mit einer Zersetzungstemperatur von TD = 0 °C thermisch am instabilsten ist. Durch das Ersetzten von Lithium durch Natrium konnte die Stabilit{\"a}t des Carbenoids drastisch erh{\"o}ht werden, was sich in einer Zersetzungstemperatur von TD = 30 °C widerspiegelt. Diese Beobachtung ist entgegen des Trends der Stabilit{\"a}t von einfachen Alkalimetallorganylen und hebt die Besonderheit der Alkalimetall-Carbenoide hervor. Es konnte dabei auch gezeigt werden, dass durch Kalium keine weitere Stabilisierung erzielt werden konnte. Allgemein {\"a}hneln sich die beobachteten Natrium- und Kalium-Carbenoide 53-Na und 53-K sowohl in ihrer thermischen Stabilit{\"a}t als auch in ihren NMR-spektroskopischen Eigenschaften. 53-Na und 53-K konnten - im Gegensatz zur Lithiumverbindung - in sehr guten Ausbeuten als gelbe Feststoffe isoliert und kristallographisch untersucht werden (Abb. 4.1). Damit stellen 53-Na und 53-K die ersten isolierten Carbenoide der schweren Alkalimetalle dar. 53-Na bildet ein Monomer, 53-K ein zentrosymmetrisches Dimer im Festk{\"o}rper. Beide Carbenoide bilden sogenannte Carben-Donor-Komplexe mit einem M-Cl-Kontakt, aber keinerlei Wechselwirkung zwischen dem Metall und dem carbenoiden Kohlenstoffatom aus. Die beobachtete C1-Cl-Bindungsverl{\"a}ngerung um Δd = 0.05 {\AA} (53-Na) bzw. Δd = 0.03 {\AA} (53-K) best{\"a}tigt die erh{\"o}hte Polarisierung der C1-Cl-Bindung, was typisch f{\"u}r den carbenoiden Charakter ist. Durch elektrostatische Wechselwirkungen und negativer Hyperkonjugation wird die negative Ladung am carbenoiden Kohlenstoff stabilisiert, was sich in einer Verl{\"a}ngerung der C1-P- bzw. C1-Si-Bindung und einer Verk{\"u}rzung der P-S-Bindung {\"a}ußert. Die erh{\"o}hte Stabilit{\"a}t von 53-Na und 53-K verglichen mit der Lithiumverbindung wurde auf die erh{\"o}hte Polarit{\"a}t, geringere Lewis-Acidit{\"a}t und den erh{\"o}hten ionischen Charakter der M-C-Wechselwirkung zur{\"u}ckgef{\"u}hrt. Diese Vermutung f{\"u}hrte zur Annahme, dass eine Manipulation der M-C-Wechselwirkung die M{\"o}glichkeit bietet, die Stabilit{\"a}t von Carbenoiden zu kontrollieren. Durch die Koordination starker Donorliganden wie 12-Krone-4 im Fall von Lithium bzw. 18-Krone-6 f{\"u}r Kalium konnten die entsprechenden Carbenoide synthetisiert und strukturell charakterisiert werden. Dabei bildeten sich durch die Koordination des Kronenethers separierte Ionenpaare im Festk{\"o}rper, was zur gew{\"u}nschten thermischen Stabilisierung f{\"u}hrte. So zeigte 53-Li•(12-Krone-4)2 eine erh{\"o}hte Zersetzungstemperatur von TD = 20 °C im Vergleich zum THF-Addukt [(53-K)2•(18-Krone-6): TD = 40 °C]. Die f{\"u}r die Chlor-Carbenoide 53-M durchgef{\"u}hrten Untersuchungen wurden im Anschluss auf die Fluor-Carbenoide 52-M erweitert. Dabei belegten NMR-spektroskopische Studien die erwartungsgem{\"a}ß geringere thermische Stabilit{\"a}t der Fluor-Systeme. Im Fall von 52-Li konnte eine Zersetzungstemperatur von TD = -70 °C bestimmt werden, w{\"a}hrend sich 52-Na und 52-K mit Zersetzungstemperaturen von TD = 10 °C (52-Na) bzw. 30 °C (52-K) - analog zu den Chlor-Carbenoiden - als thermisch deutlich stabiler erwiesen. Das carbenoide Kohlenstoffatom erf{\"a}hrt im 13C{1H}-NMR-Spektrum eine f{\"u}r Carbenoide typische Tieffeldverschiebung im Vergleich zur protonierten Vorstufe. Diese f{\"a}llt im Fall von 52-Li (ΔC = 33 ppm) etwas gr{\"o}ßer aus als f{\"u}r 52-Na (ΔC = 32 ppm) bzw. 52-K (ΔC = 30 ppm). Neben der Bestimmung der Zersetzungstemperatur der Carbenoide gelang es ebenfalls, die Zersetzungsprodukte der M/Cl- und M/F-Carbenoide aufzukl{\"a}ren und zu charakterisieren. So konnte gezeigt werden, dass sich die Chlor-Carbenoide selektiv zur sesselartigen Verbindung 57 zersetzen (Abb. 4.2). Bei den Fluor-Carbenoiden 52-M kommt es hingegen zur Bildung unterschiedlicher Verbindungen. Diese werden jedoch vermutlich alle {\"u}ber das Thioketon-Intermediat TK gebildet, das durch Wanderung des Schwefels der Thiophosphorylgruppe zum carbenoiden Kohlenstoffatom entsteht und durch Abfangreaktion mit Methyllithium zum lithiierten Thioether 60 nachgewiesen werden konnte. In Abh{\"a}ngigkeit vom Metall und Abgangsgruppe werden anschließend unterschiedliche Reaktionswege durchlaufen. Gem{\"a}ß des HSAB-Konzepts erfolgt im Fall des Lithium-Carbenoids der Angriff am Schwefelatom des Thioketons, wobei die zyklische Verbindung 57 gebildet wird. Beim weicheren Kalium-Carbenoid 52-K kommt es selektiv zur Bildung des Thioenolats 65, w{\"a}hrend f{\"u}r 52-Na ein Gemisch aus 57 und 65 beobachtet wird. Abb. 4.2. (oben) Zersetzungsreaktionen der M/X-Carbenoide 52-M und 53-M; (unten) Molek{\"u}lstrukturen der Verbindungen 60 und 65 im Festk{\"o}rper. Die zu 52 analogen bromierten und iodierten Ausgangsverbindungen eigneten sich nicht zur Darstellung von Carbenoiden. Hier gelang es nicht durch Deprotonierung die Carbenoide zu synthetisieren. Le Floch und Mitarbeiter konnten bereits 2007 zeigen, dass durch eine zweite stabilisierende Thiophosphorylgruppe das Li/Cl-Carbenoid 14 bis zu einer Temperatur von 60 °C keine Zersetzungsreaktionen zeigt. Basierend auf diesen {\"U}berlegungen wurden - analog zu den Silyl-substituierten Carbenoiden - der Einfluss der unterschiedlichen Alkalimetalle und Halogene auf die Eigenschaften und die Stabilit{\"a}t der entsprechenden Carbenoide untersucht. Zur Darstellung der Carbenoide wurden die protonierten Vorstufen 69-71 mit einem leichten {\"U}berschuss an Alkalimetallhexamethyldisilazan umgesetzt. Die Fluor-Carbenoide 69-M zeigten dabei wieder die f{\"u}r Carbenoide typische Tieffeldverschiebung des carbenoiden Kohlenstoff-atoms im 13C{1H}-NMR-Spektrum verglichen mit der protonierten Vorstufe. Im Fall der Chlor- und Brom-Carbenoide 70-M bzw. 71-M sind {\"a}hnliche Signalverschiebungen zu beobachten, allerdings fallen diese schw{\"a}cher aus. Erneut sind starke spektroskopische {\"A}hnlichkeiten zwischen den Natrium- und Kalium-Vertretern festzustellen, w{\"a}hrend die Lithium-Carbenoide eine gewisse Ausnahmestellung einnehmen. Abb. 4.3. (oben) Synthese von 69-M, 70-M und 71-M; (unten) Molek{\"u}lstrukturen der Bis(thiophosphoryl)-substituierten Carbenoide 69-Na•PMDTA, 70-Na und 70-K im Festk{\"o}rper. Durch VT-NMR-Messungen konnte gezeigt werden, dass alle Carbenoide bis Temperaturen von 60 °C keine Zersetzungsreaktionen eingehen. So gelang es, alle Carbenoide als gelbe Feststoffe zu isolieren. Einzig das Li/F-Carbenoid erwies sich bei Raumtemperatur als instabil und wies eine Zersetzungstemperatur von TD = 0 °C auf. Damit ist es das bis heute stabilste Li/F-Carbenoid das in der Literatur bekannt ist. Durch r{\"o}ntgenkristallographische Untersuchungen konnten alle Chlor- bzw. Brom-Carbenoide 70-M bzw. 71-M sturkturell charakterisiert werden. Dabei ist es gelungen, zus{\"a}tzlich zu den bereits bekannten Strukturen schwerer Alkalimetall-Carbenoide, einige Metall-Halogen-Kombinationen erstmalig strukturell zu charakterisieren. Durch den Zusatz von PMDTA gelang es auch das erste Na/F-Carbenoid zu charakterisieren. Abbildung 4.3 zeigt exemplarisch einige Vertreter der neuen Strukturen. Auff{\"a}llig ist dabei, dass in Abh{\"a}ngigkeit des Metalls {\"a}hnliche Strukturen erhalten wurden. So bilden die Kalium-Vertreter 70-K und 71-K wieder ein zentrosymmetrisches Dimer aus, w{\"a}hrend die Natrium-Vertreter 69-Na•PMDTA, 70-Na, 71-Na und 71-Li als Monomere vorliegen. Bei den beschriebenen Carbenoiden ist nur bei 69-Na•PMDTA und 70-Na die f{\"u}r Carbenoide typische C1-X-Bindungsverl{\"a}ngerung beobachtbar, was auf deren erh{\"o}hten carbenoiden Charakter im Vergleich mit den anderen Systemen schließen l{\"a}sst. Zusammenfassend l{\"a}sst sich folgender allgemeiner Trend formulieren: Der carbenoide Charakter f{\"a}llt in der Gruppe der Halogene von F zu I und in der Gruppe der Alkalimetalle gem{\"a}ß Li > Na ≥ K. Die thermische Stabilit{\"a}t zeigt gleichzeitig einen inversen Trend (Abb. 4.4). Reaktivit{\"a}t, carbenoider Charakter Thermische Stabilit{\"a}t Abb. 4.4. Tendenzen in den Eigenschaften von Carbenoiden. Reaktivit{\"a}t und Anwendung Nachdem die Carbenoide auf ihre Stabilit{\"a}ten, NMR-spektroskopischen und strukturellen Eigenschaften untersucht wurden, stand in weiteren Studien die Reaktivit{\"a}t der Carbenoide im Vordergrund. Hierbei lag der Fokus vor allem auf E-H-Bindungsaktivierungsreaktionen, da es bislang nur wenige Beispiele f{\"u}r Carbenoide mit Hauptgruppenelementverbindungen gibt. Zun{\"a}chst sollte die Reaktivit{\"a}t von 53-Li gegen{\"u}ber Boranen untersucht werden. Hierbei kommt es zur selektiven Bildung des Lithiumborats 79 (Abb. 4.5). An das ehemalige carbenoide Kohlenstoffatom ist dabei eine BH3-Einheit und ein weiteres Wasserstoffatom gebunden. Durch theoretische und experimentelle Untersuchungen konnte der Reaktionsmechanismus zu 79 aufgekl{\"a}rt werden, der als schrittweise B-H-Aktivierung beschrieben werden kann. So kommt es zun{\"a}chst zur Boratbildung und anschließend zum Cl/H-Austausch mit Hilfe eines weiteren Boran-Molek{\"u}ls. Dies konnte durch Deuterierungsexperimente mit BD3•THF experimentell best{\"a}tigt werden. Die Lithiumboratbildung zeigte sich dabei abh{\"a}ngig von der Stabilit{\"a}t der Lewis-Basen-Addukte, da mit den stabileren Amin- bzw. Phosphan-Boran-Addukten keine Umsetzung zu 79 beobachtet werden konnte. Abb. 4.5. (links) B-H-Aktivierung durch Carbenoid 53-Li; (rechts) Molek{\"u}lstruktur des Lithiumborats 79 im Festk{\"o}rper. Im n{\"a}chsten Schritt wurde die Reaktivit{\"a}t gegen{\"u}ber Phosphanen getestet. Dabei kam es interessanterweise nicht zu einer analogen P-H-Bindungsaktivierung, sondern vielmehr zu einer Dehydrokupplung der sekund{\"a}ren Arylphosphane zu den entsprechenden Diphosphanen unter Bildung der zweifach protonierten Vorstufe (Abb. 4.6). Diese Reaktion ist bisher einzigartig in der Chemie der Carbenoide und hebt deren großes Potenzial f{\"u}r weitere Anwendungen hervor. Das entwickelte Syntheseprotokoll stellt eine sehr selektive und effektive Methode dar, Phosphane zu Diphosphanen zu kuppeln. Es war so m{\"o}glich die Diphosphane nach der Abtrennung der zweifach protonierten Vorstufe, die anschließend recycelt werden kann, in sehr guten Ausbeuten von {\"u}ber 90\% zu isolieren. Dabei erlaubte das Syntheseprotokoll die Gegenwart funktioneller Gruppen, z.B. Methoxy-, Dimethylamino- oder Trifluoromethyl-Substitutenten. {\"U}berraschenderweise zeigten die Umsetzungen der Lithium-Carbenoide mit Chlorsubstituierten Arylphosphanen keinerlei Substitutionsreaktionen am Aromaten sondern f{\"u}hrten ebenfalls selektiv zu den Diphosphanen. Einzig das sterisch anspruchsvolle sekund{\"a}re Arylphosphan Mes2PH oder aliphatische Phosphane wie tBu2PH oder Cy2PH eigneten sich nicht zur Dehydrokupplung. Im Fall des 3,5-Dichlorsubstiuierten Phosphans war es m{\"o}glich neben dem Diphosphan das entsprechende P-H-Aktivierungsprodukt zu beobachten und in einer Ausbeute von 22\% zu isolieren. Diese Aktivierung zeigte sich abh{\"a}ngig von der Konzentration der Reaktionsl{\"o}sung und konnte durch hohe Verd{\"u}nnung unterdr{\"u}ckt werden. Abb. 4.6. (links) Carbenoid-vermittelte Dehydrokupplung von Ar2PH; (rechts) Molek{\"u}lstruktur von (p-C6H4Me)4P2 im Festk{\"o}rper. Bemerkenswerterweise zeigten quantenchemische Studien, dass die einfachen und nicht-stabilisierten Carbenoide, wie beispielsweise LiC(H)Cl2, nicht f{\"u}r die Dehydrokupplung von Phosphanen geeignet sind und eine ausreichende elektronische Stabilisierung f{\"u}r selektive Ums{\"a}tze erforderlich ist. So ist zwar im Experiment f{\"u}r alle untersuchten Carbenoide die Diphosphan-Bildung beobachtbar, allerdings f{\"u}r unstabilisierte Systeme nur als Nebenreaktion. Mechanistische Studien zeigten, dass der erste Schritt der Reaktion die Deprotonierung des Phosphans und die Bildung einer Phosphid-Spezies ist. Dieser Schritt ist im Fall der stabilisierten Carbenoide bevorzugt. Bei den nicht-stabilisierten Carbenoiden stellt die Bildung des Carbens unter Salzeliminierung den ersten Reaktionsschritt dar, was im Anschluss zu unselektiven Folgereaktionen f{\"u}hrt. Die synthetisierten Diphosphane besitzen großes Potenzial f{\"u}r weitere Anwendungen, beispielsweise als Liganden in der {\"U}bergangsmetallkatalyse. Basierend auf diesen {\"U}berlegungen wurden in anf{\"a}nglichen Studien die Diphosphane an Gold(I)-Fragmente koordiniert (Abb. 4.7). Es gelang dabei die Diphosphan-Bisgold-Komplexe in nahezu quantitativen Ausbeuten als farblose Feststoffe zu isolieren und mittels Multikern-NMR-Spektroskopie und hochaufgel{\"o}ster Massenspektrometrie zu charakterisieren. Einzig die Chlor-substituierten Diphosphane zeigten nach der Zugabe von Gold(I) bereits Kupplungsreaktionen mit sich selbst. R{\"o}ntgenkristallographische Untersuchungen zeigten, dass die beiden Gold-Zentren eine trans-Stellung zueinander einnehmen, in der keine intramolekulare Au•••Au-Wechselwirkung beobachtet werden konnte. Auch in der Kristallpackung zeigte sich, dass die Bildung der Festk{\"o}rperstrukturen von C-H•••X- und π•••π-Wechselwirkungen dominiert wird. Studien zum Einsatz in der Katalyse stehen noch aus. Da die Komplexe in allen gel{\"a}ufigen L{\"o}sungsmitteln schwer l{\"o}slich sind, besteht weiter Optimierungsbedarf, um die L{\"o}slichkeit, z.B. durch Einf{\"u}hrung von Alkylgruppen, zu erh{\"o}hen. Abb. 4.7. (links) Syntheseweg zu Diphosphan-Bisgold-Komplexen; (rechts) Molek{\"u}lstruktur des Bisgold-Komplexes von (p-C6H4Me)4P2 im Festk{\"o}rper. Neben der einzigartigen Reaktivit{\"a}t Silyl-substituierter Carbenoide gegen{\"u}ber element-organischen Verbindungen wie Boranen oder Phosphanen wurde auch die Reaktivit{\"a}t gegen{\"u}ber sp{\"a}ten {\"U}bergangsmetallkomplexen, hier exemplarisch [Pd(PPh3)4] untersucht. Ziel sollte es sein mit Carbenoiden als selektiven Carbentransferreagenzien Zugang zu Carbenkomplexen zu erhalten, die schwer {\"u}ber alternative Routen zug{\"a}nglich sind. Bei Verwendung der Silyl-substituierten Systeme kam es dabei jedoch zun{\"a}chst nicht zur selektiven Synthese des Carbenkomplexes C, sondern vielmehr zu Produktgemischen aus Thioketon-komplex T und Carbenkomplex C. Die Verh{\"a}ltnisse erwiesen sich jedoch als abh{\"a}ngig vom Metall, Halogen und der Silylgruppe des Carbenoids sowie von der Reaktionstemperatur. Tabelle 4.1 zeigt eine {\"U}bersicht. Je tiefer die Temperatur und je gr{\"o}ßer die Substituenten der Silylgruppe desto mehr Carbenkomplexbildung kann beobachtet werden. Theoretische Berechnungen der Trimethylsilyl- bzw. Triphenylsilyl-Systeme konnten die experimentellen Befunde best{\"a}tigen. Der Thioketonkomplex T stellt so das thermodynamisch stabilere Produkt dar, w{\"a}hrend der Carbenkomplex C kinetisch bevorzugt ist. Erfreulicherweise gelingt bei Verwendung der im Vergleich zum Lithiumsystem stabileren Natrium- bzw. Kalium-Carbenoide die selektive Synthese des Palladium-Carbenkomplexes C (Eintr{\"a}ge 3 und 4). Durch die Stabilisierung des Li/Cl-Carbenoids durch Kronenether kann ebenfalls die Carbenkomplex-bildung forciert werden (Eintrag 5). Je stabiler die Carbenoide, desto selektiver wird der Carbenkomplex C gebildet. Das zeigt auch die Reaktion des sehr reaktiven Li/F-Carbenoids, das vollst{\"a}ndig zum Thioketonkomplex T reagiert (Eintrag 11). Bei den Kalium-Carbenoiden der sterisch anspruchsloseren Silyl-Systeme tritt noch ein weiteres Reaktionsprodukt auf, das als das Ylid Y identifiziert wurde. Dieses tritt auch bei Kristallisationsversuchen des Carben-komplexes auf und wurde r{\"o}ntgenkristallographisch untersucht. Tabelle 4.1. Reaktivit{\"a}t unterschiedlicher Silyl-substituierter Carbenoide gegen{\"u}ber [Pd(PPh3)4]. Eintrag Metall Halogen Silylgruppe Temperatur Thioketon-komplex [\%]a Carben-komplex [\%]a Ylid [\%]a 1 Li Cl SiPh3 RT 80 20 - 2 Li Cl SiPh3 -78 °C 48 52 - 3 Na Cl SiPh3 RT - >99 - 4 K Cl SiPh3 RT - >99 - 5 Li•(12-Krone-4) Cl SiPh3 RT - 93 - 6 K•(18-Krone-6) Cl SiPh3 RT - 75 25 7 K Cl SiMePh2 -40 °C - 71 29 8 K Cl SiMe2Ph -40 °C - 43 57 9 K Cl SiMe3 -10 °C 70 30 - 10 K Cl SiMe3 -40 °C 40 33 26 11 Li F SiPh3 -78 °C >99 - - [a] Verh{\"a}ltnis der Produkte durch 31P{1H}-NMR-Spektroskopie bestimmt. Trotz selektiver Synthese des Carbenkomplexes 119 erwies sich die Aufreinigung als problematisch, da das gebildete Triphenylphosphan vermutlich aufgrund der Koordination an das Metallsalz schwer abgetrennt werden konnte. {\"U}berraschenderweise zeigte sich beim Erw{\"a}rmen des Gemisches auf 80 °C die Bildung einer neuen Verbindung, die als Diphosphanphosphonium-Komplex 121 identifiziert wurde. Dieser konnte mittels NMR-spektroskopischer Untersuchungen und hochauf-gel{\"o}ster Massenspektrometrie charakterisiert werden. Studien zur Strukturanalyse und zur Reaktivit{\"a}t stehen hier allerdings noch aus. Da der Carbenkomplex zun{\"a}chst nicht selektiv dargestellt werden konnte, wurde eine alternative Syntheseroute entwickelt. Diese beinhaltete die oxidative Addition der halogenierten Liganden an das {\"U}bergangsmetall und anschließende Dehydrohalogenierung. Hierzu wurden analog Abbildung 4.9 zuerst die Palladium-Komplexe in einer oxidativen Additionsreaktion synthetisiert. Dabei gelang es sowohl unterschiedliche Halogenatome als auch unterschiedliche Silyl-Reste in der Synthese der Palladium-Komplexe zu etablieren. Die luftstabilen Verbindungen 129-134 konnten in moderaten bis guten Ausbeuten (52-91\%) als gelbe Feststoffe isoliert und durch Multikern-NMR-Spektroskopie, hochaufgel{\"o}ste Massen-spektrometrie und R{\"o}ntgenstrukturanalyse charakterisiert werden. Sie besitzen in allen F{\"a}llen das sehr {\"a}hnliche Strukturmotiv eines nahezu quadratisch-planar koordinierten Palladium-atoms. Zur Dehydrohalogenierung wurden die Komplexe 129-134 mit verschiedenen Basen umgesetzt. Mit Hilfe der Alkalimetallhexamethyldisilazan-Basen gelang die gew{\"u}nschte HX-Eliminierung, jedoch nicht unter Bildung des Carbenkomplexes, sondern biscyclo-metallierter Produkte. Beim Triphenylsilyl-substituierten System 129 konnte nach der Aufarbeitung Verbindung 135 isoliert werden, bei der ein an das Siliciumatom gebundener Phenylring metalliert wurde. Bei den Methyl-substituierten Vertretern 131 und 133 fand hingegen selektiv die Metallierung einer Methylgruppe unter Ausbildung ungew{\"o}hnlicher Palladacyclobutane statt. Dies konnte im Fall von 137 eindeutig durch R{\"o}ntgenstrukturanalyse best{\"a}tigt werden (Abb. 4.9). Abb. 4.9. (links) Syntheseweg zu den Palladium-Komplexen 129-138; (rechts) Molek{\"u}lstrukturen der Palladium-Komplexe 130 und 137 im Festk{\"o}rper. Da cyclometallierte Palladium-Komplexe als effektive Katalysatoren in C-C-Kn{\"u}pfungs-reaktionen eingesetzt werden, sollte auch das Potenzial der synthetisierten Komplexe getestet werden. Dabei zeigte sich, dass alle Komplexe eine h{\"o}here Aktivit{\"a}t als [Pd(PPh3)4] in der Suzuki-Miyaura-Kupplung von 4-Bromanisol mit Phenylborons{\"a}ure aufweisen. Aus Tabelle 4.2 wird aber auch ersichtlich, dass die zweite Cyclisierung einen negativen Effekt auf die Aktivit{\"a}t hat. Verbindung 129, das Produkt der einfachen oxidativen Addition, zeigte bereits nach vier Stunden nahezu vollst{\"a}ndigen Umsatz. Dabei konnten TON's von etwa 17000 bei nahezu gleichbleibendem Umsatz erzielt werden (Eintrag 5). Tabelle 4.2. Palladium-katalysierte Suzuki-Miyaura-Kupplung von 4-Bromanisol und Phenylborons{\"a}ure. Eintrag Katalysator Katalysator-Ladung [mol \%] Reaktionszeit [h] NMR-Ausbeute [\%]a 1 [Pd(PPh3)4] 0.5 2 25 2 129 0.5 1.75 79 3 129 0.5 4 95 4 129 0.5 8 98 5 129 0.005 3 85 6 137 0.5 4 71 7 137 0.5 8 87 8 137 0.5 10 92 9 135 0.5 8 92 [a] Ausbeuten bestimmt durch NMR-Spektroskopie bezogen auf 4-Bromanisol. Insgesamt konnten in dieser Doktorarbeit zahlreiche neue Erkenntnisse im Bereich der Carbenoidchemie erarbeitet werden. Diese lassen sich wiefolgt zusammenfassen: • Anhand von Silyl- und Thiophosphoryl-stabilisierter Carbenoide konnte erstmals systematisch der Einfluss der M/X-Kombination auf die Stabilit{\"a}t und Reaktivit{\"a}t von Carbenoiden untersucht werden. • Erstmals konnten Na- und K-Carbenoide isoliert und strukturell charakterisiert werden. • Mit Hilfe der Stabilisierung konnten neue Anwendungsgebiete im Bereich der element-organischen Chemie erschlossen werden, darunter die B-H-Bindungsaktivierung am carbenoiden Kohlenstoffatom und die Kupplung von Phosphanen. • Beim Einsatz von Carbenoiden als Carbentransferreagenzien zur Darstellung ungew{\"o}hnlicher Carbenkomplexe konnte gezeigt werden, dass Selektivit{\"a}ten von zahlreichen Faktoren abh{\"a}ngen und beeinflusst werden k{\"o}nnen. Mit diesen Studien konnte folglich ein Kreis von der Stabilisierung und Isolierung der normalerweise hochreaktiven Carbenoide zu deren Anwendungen geschlossen werden. Die Studien zeigen zudem das Potenzial dieser Verbindungsklasse und lassen vermuten, dass durch ein weiteres Einstellen von Stabilit{\"a}t und Reaktivit{\"a}t noch bisher unbekannte Reaktionsmuster erm{\"o}glicht werden k{\"o}nnen.}, subject = {Carbenoide}, language = {de} } @phdthesis{Haerterich2024, author = {H{\"a}rterich, Marcel}, title = {Synthese und Reaktivit{\"a}t niedervalenter borhaltiger Verbindungen der Oxidationsstufe +1}, doi = {10.25972/OPUS-31760}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317605}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die vorliegende Arbeit befasst sich mit der Synthese und Reaktivitat niedervalenter borhaltiger Verbindungen der Oxidationsstufe +I, sowie der Darstellung eines neuen zweiz{\"a}hnigen Carbens. Von zentraler Bedeutung waren dabei Verbindungen aus der Substanzklasse der cAACs, die sowohl als stabilisierende Lewis-Basen der Diborene und Borylene zum Einsatz kamen, als auch das Grundger{\"u}st des neuen Carbens bilden. Zun{\"a}chst stand die Synthese eines neuen Diborens im Fokus, wobei Cyclohexylsubstituenten am Pyrrolidingerust des cAACs verwendet wurden. Die Reaktivit{\"a}tsstudien wurden anschließend am Diboren mit dem methylsubstituierten cAAC-Derivat durchgef{\"u}hrt. Dabei konnte neben der 1,2-Addition von Wasser die Insertion von Acetylen in die BB-Bindung, sowie die Spaltung durch die Reaktion mit diversen Aziden beobachtet werden. Dar{\"u}ber hinaus gelingt die vollst{\"a}ndige Separierung beider Boratome in zwei getrennte Molek{\"u}le bei der Umsetzung mit Kohlenstoffdioxid in einer Reaktionssequenz aus [2+2]-Cycloaddition und -reversion. Das dabei erhaltene Hydroborylen wurde im zweiten Teil der Arbeit hinsichtlich seiner Reaktivit{\"a}t untersucht. Gerade die Carbonylfunktionalit{\"a}t erlaubte hierbei den Zugang zu vielf{\"a}ltigen Reaktionsprodukten. Unter anderen kann der Carbonylsubstituent in ein Alkin oder ein Nitril {\"u}berf{\"u}hrt werden. Zudem kann die, aus der {\"U}bergangsmetall-Carbonylchemie bekannte, Fischer-Carben Synthese am Borylen reproduziert werden und stellt somit ein metallomimetisches Verhalten der Borylene zur Schau. Der letzte Teil befasst sich mit der Darstellung eines zweiz{\"a}hnigen Carbenliganden, wobei der Nachweis des freien Carbens indirekt mittels Abfangreaktionen gelang.}, subject = {Bor}, language = {de} }