@phdthesis{Jacobs2003, author = {Jacobs, Arne}, title = {Andreev-Streuung, Josephson-Bloch-Oszillationen und Zener-Tunneln in Heterokontakten aus Normal- und Supraleitern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9237}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die vorliegende Arbeit beleuchtet verschiedene Aspekte des Ladungstransports in Heterokontakten aus Normal- (N) und Supraleitern (S) im Rahmen des Bogoliubov-de Gennes-Formalismus. Dabei ist der bestimmende Prozeß die Andreev-Streuung: die Streuung von Elektronen in L{\"o}cher, bzw. umgekehrt, an r{\"a}umlichen Variationen des supraleitenden Paarpotentials unter Erzeugung, bzw. Vernichtung, eines Cooperpaares und damit der Induktion eines Suprastroms. Befindet sich ein Supraleiter zwischen zwei normalleitenden Bereichen, so wandelt sich der an der einen NS-Phasengrenze durch Andreev-Streuung induzierte Suprastrom an der anderen NS-Phasengrenze wieder in einen durch Quasiteilchen getragenen Strom um. Diese Umwandlung erfolgt durch den Einfall eines Quasiteilchens, dessen Charakter dem des auf der gegen{\"u}berliegenden Seite des Supraleiters einfallenden Quasiteilchens entgegengerichtet ist, wie anhand von Wellenpaket-Rechnungen explizit gezeigt wird. Ersetzt man den Supraleiter durch einen mesoskopischen SNS-Kontakt, ist die Vielteilchen-Konfiguration in der mittleren N-Schicht phasenkoh{\"a}rent und daher verschieden von den unkorrelierten Quasiteilchen-Anregungen, die die verschobene Fermi-Kugel in den normalleitenden Zuleitungen bilden. Die Josephson-Str{\"o}me, die durch die Quasiteilchen in der mittleren N-Schicht getragen werden, werden unter zwei verschiedenen Modellannahmen berechnet: Im einen Fall werden nur Streuzust{\"a}nde als Startzust{\"a}nde betrachtet, im anderen, bei gleichzeitiger Ber{\"u}cksichtigung eines normalstreuenden Potentials, nur gebundene Zust{\"a}nde. Der SNS-Kontakt wird durch eine supraleitend/halbleitende Heterostruktur modelliert, deren Parameter-Werte sich an den Experimenten der Gruppe von Herbert Kroemer in Santa Barbara orientieren. Wenn die supraleitenden Bereiche ohne normalleitende Zuleitungen direkt mit einem Reservoir von Cooperpaaren verbunden sind, fallen nur Quasiteilchen in Streuzust{\"a}nden aus den supraleitenden B{\"a}nken auf die NS-Phasengrenzen des Kontaktes ein. Mit den Normalleiter-Wellenfunktionen, die sich bei Anlegen einer Spannung V aus diesen Startzust{\"a}nden entwickeln, wird die Josephson-Wechselstromdichte in der Mitte der N-Schicht bei der Temperatur T = 2,2 K berechnet. Die Stromdichte weist spannungsabh{\"a}ngige Oszillationen in der Zeit auf, deren Periode das Inverse der Josephson-Frequenz ist. Alle Stromdichten zeigen bei kleinen Spannungen einen steilen Anstieg ihres Betrages, der durch Quasiteilchen zustandekommt, die durch das elektrische Feld aus dem Kondensat kommend in den Paarpotentialtopf hineingezogen werden und dort bei kleinen Spannungen eine große Zahl von Andreev-Streuungen erfahren, wobei sie bei jedem Elektron-Loch-Zyklus die Ladung 2e durch die N-Schicht transportieren. Im zweiten betrachteten Fall wird unter Ber{\"u}cksichtigung von Normalstreuung der Gesamtzustand des Systems zu jedem Zeitpunkt durch eine Superposition von gebundenen Zust{\"a}nden ausgedr{\"u}ckt. Die Energie dieser gebundenen Zust{\"a}nde ist abh{\"a}ngig von der Phasendifferenz Phi zwischen den supraleitenden Schichten. F{\"u}r Werte der Phasendifferenz von ganzzahligen Vielfachen von Pi sind Zust{\"a}nde entgegengerichteter Impulse paarweise entartet. Das normalstreuende Potential mischt diese Zust{\"a}nde, hebt ihre Entartung auf und f{\"u}hrt zu Energiel{\"u}cken: Es bilden sich Energieb{\"a}nder im Phi-Raum, die formal den Bloch-B{\"a}ndern von Kristallen im Wellenzahlraum entsprechen. Wird eine {\"a}ußere Spannung angelegt, so {\"a}ndert sich die Phasendifferenz gem{\"a}ß der Josephson-Gleichung mit der Zeit und die Quasiteilchen oszillieren in ihren jeweiligen Phi-Bloch-B{\"a}ndern: Diese Josephson-Bloch-Oszillationen ergeben den "normalen" Josephson-Wechselstrom, der zwischen positiven und negativen Werten schwingt und im zeitlichen Mittel Null ist. Zus{\"a}tzlich k{\"o}nnen die Quasiteilchen durch Zener-Tunneln --- wie der analoge Prozeß in der Halbleiterphysik genannt wird --- in h{\"o}here B{\"a}nder {\"u}bergehen. W{\"a}hrend sich die Richtung der Josephson-Stromdichte zu den Zeiten minimaler Energiel{\"u}cke umkehrt, hat die Zener-Tunnel-Stromdichte nach einem Tunnel-Prozeß das gleiche Vorzeichen, das die Josephson-Stromdichte vor dem Tunnel-Prozeß hatte. Wenn die angelegte Spannung hinreichend groß ist und gen{\"u}gend Quasiteilchen in das h{\"o}here Band tunneln, {\"u}berkompensiert die Zener-Tunnel-Stromdichte in der Halbperiode nach dem Tunnel-Prozeß die Josephson-Stromdichte, und die Gesamtstromdichte schwingt wieder in dieselbe Richtung wie vor dem Zener-Tunneln. Somit hat sich gewissermaßen die Periode halbiert: Die Gesamtstromdichte schwingt mit der doppelten Josephson-Frequenz. Allen untersuchten Aspekten des Ladungstransports durch Heterokontakte aus Normal- und Supraleitern ist eines gemein: Der f{\"u}r ihr Verst{\"a}ndnis fundamentale Prozeß ist die Andreev-Streuung.}, subject = {Supraleiter}, language = {de} } @phdthesis{Leisegang2021, author = {Leisegang, Markus}, title = {Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde}, doi = {10.25972/OPUS-25076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Verlustarmer Ladungstr{\"a}gertransport ist f{\"u}r die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende W{\"a}rme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungstr{\"a}gertransport bestimmen, laufen jedoch auf L{\"a}ngenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu k{\"o}nnen, bedarf es Messmethoden mit hoher zeitlicher oder {\"o}rtlicher Aufl{\"o}sung. F{\"u}r Letztere gibt es wenige etablierte Experimente, h{\"a}ufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschr{\"a}nkungen unterliegen. Um die M{\"o}glichkeiten der Detektion von Ladungstr{\"a}gertransport auf Distanzen der mittleren freien Wegl{\"a}nge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molek{\"u}l als Detektor f{\"u}r Ladungstr{\"a}ger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molek{\"u}l in das untersuchte Substrat injiziert werden. Die hohe Aufl{\"o}sung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors erm{\"o}glicht dabei atomare Kontrolle von Transportpfaden {\"u}ber wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierf{\"u}r werden zun{\"a}chst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Molek{\"u}ls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden F{\"a}llen zeigt sich eine signifikante {\"A}nderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Molek{\"u}ls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zus{\"a}tzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfl{\"a}che, was einen nicht-punktf{\"o}rmigen Detektor best{\"a}tigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde pr{\"a}sentiert. Zun{\"a}chst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungstr{\"a}gern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfl{\"a}che durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird.}, subject = {Rastertunnelmikroskopie}, language = {de} } @phdthesis{Hansen2017, author = {Hansen, Nis Hauke}, title = {Mikroskopische Ladungstransportmechanismen und Exzitonen Annihilation in organischen Einkristallen und D{\"u}nnschichten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143972}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Um die Natur der Transportdynamik von Ladungstr{\"a}gern auch auf mikroskopischen L{\"a}ngenskalen nicht-invasiv untersuchen zu k{\"o}nnen, wurde im ersten Schwerpunkt dieser Arbeit das PL- (Photolumineszenz-) Quenching (engl.: to quench: l{\"o}schen; hier: strahlungslose Rekombination von Exzitonen) in einer organischen D{\"u}nnschicht durch die injizierten und akkumulierten L{\"o}cher in einer Transistorgeometrie analysiert. Diese Zusammenf{\"u}hrung zweier Methoden - der elektrischen Charakterisierung von D{\"u}nnschichttransistoren und der Photolumineszenzspektroskopie - erfasst die {\"A}nderung des strahlenden Zerfalls von Exzitonen infolge der Wechselwirkung mit Ladungstr{\"a}gern. Dadurch werden r{\"a}umlich aufgel{\"o}ste Informationen {\"u}ber die Ladungsverteilung und deren Spannungsabh{\"a}ngigkeit im Transistorkanal zug{\"a}nglich. Durch den Vergleich mit den makroskopischen elektrischen Kenngr{\"o}ßen wie der Schwell- oder der Turn-On-Spannung kann die Funktionsweise der Transistoren damit detaillierter beschrieben werden, als es die Kenngr{\"o}ßen alleine erm{\"o}glichen. Außerdem wird die Quantifizierung dieser mikroskopischen Interaktionen m{\"o}glich, welche beispielsweise als Verlustkanal in organischen Photovoltaikzellen und organicshen Leuchtdioden auftreten k{\"o}nnen. Die Abgrenzung zu anderen dissipativen Prozessen, wie beispielsweise der Exziton-Exziton Annihilation, Ladungstr{\"a}gerrekombination, Triplett-{\"U}berg{\"a}nge oder Rekombination an St{\"o}rstellen oder metallischen Grenzfl{\"a}chen, erlaubt die detaillierte Analyse der Wechselwirkung von optisch angeregten Zust{\"a}nden mit Elektronen und L{\"o}chern. Im zweiten Schwerpunkt dieser Arbeit werden die Transporteigenschaften des Naphthalindiimids Cl2-NDI betrachtet, bei dem der molekulare {\"U}berlapp sowie die Reorganisationsenergie in derselben Gr{\"o}ßenordnung von etwa 0,1 eV liegen. Um experimentell auf den mikroskopischen Transport zu schließen, werden nach der Optimierung des Kristallwachstums Einkristalltransistoren hergestellt, mit Hilfe derer die Beweglichkeit entlang verschiedener kristallographischer Richtungen als Funktion der Temperatur gemessen werden kann. Die einkristalline Natur der Proben und die spezielle Transistorgeometrie erm{\"o}glichen die Analyse der r{\"a}umlichen Anisotropie des Stromflusses. Der gemessene Beweglichkeitstensor wird daraufhin mit simulierten Tensoren auf der Basis von Levich-Jortner Raten verglichen, um auf den zentralen Ladungstransfermechanismus zu schließen.}, subject = {Organischer Halbleiter}, language = {de} }