@phdthesis{Appel2008, author = {Appel, Markus}, title = {Untersuchungen zur 2H/1H- und 13C/12C-Isotopenfraktionierung bei der Biogenese von Aromastoffen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28426}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {F{\"u}r die Authentizit{\"a}tsbewertung achiraler Aromastoffe ist die gaschromatographische Isotopenverh{\"a}ltnismessung mittels massenspektrometrischer Analyse ein etabliertes Verfahren. Diese Technik erm{\"o}glicht es, {\"u}ber geeignete Datenbanken authentischer Referenzproben gesicherte Aussagen hinsichtlich deren Herkunft aus nat{\"u}rlicher oder synthetischer Quelle zu treffen. Zunehmend ins Interesse r{\"u}ckt allerdings auch die Frage, ob es mittels Techniken der Stabilisotopenanalytik ebenso m{\"o}glich ist, das breite Feld der legislativ als „nat{\"u}rlich" deklarierten Aromastoffe analytisch weiter in deren Herkunft aus biotechnologischer oder nat{\"u}rlicher („ex plant") Quelle aufzutrennen. Zwar kann dieser Fragestellung prinzipiell {\"u}ber die Erweiterung bestehender Stabilisotopen-Datenbanken mit authentischen Proben nachgegangen werden, sie scheitert jedoch h{\"a}ufig an der limitierten Verf{\"u}gbarkeit authentischer biotechnologischer Referenzen oder der eingeschr{\"a}nkten Kenntnis {\"u}ber die der Produktion „nat{\"u}rlicher" Aromastoffe zugrundeliegenden Verfahrenstechniken. Eine m{\"o}gliche Vorgehensweise zur Umgehung dieses Sachverhalts stellt daher die in Anlehnung an beschriebene biotechnologische Verfahren im Labormaßstab durchgef{\"u}hrte Produktion ausgew{\"a}hlter und somit auch authentischer Referenz-Aromastoffe dar. Diese Methode hat zudem den Vorteil, dass gegebenenfalls zus{\"a}tzliche Informationen {\"u}ber m{\"o}gliche Isotopenfraktionierungen in solchen Systemen ermittelt werden k{\"o}nnen, welche sich nicht nur zur Authentizit{\"a}tspr{\"u}fung als n{\"u}tzlich erweisen k{\"o}nnen, sondern auch zur stetig wachsenden Grunderkenntnis {\"u}ber Isotopenfraktionierungen in biologischen Systemen beitragen. Ziel der vorliegenden Arbeit war es daher, der geschilderten Fragestellung bez{\"u}glich ausgew{\"a}hlter Aromastoffe aus den Gruppen der C6-Aldehyde und -Alkohole („Gr{\"u}nnoten") sowie der G{\"a}rungsalkohole nachzugehen. Zu diesem Zweck erfolgten zum einen im Labormaßstab die biogenetische Bildung von C6-Aldehyden und -Alkoholen ausgehend von den unges{\"a}ttigten Fetts{\"a}uren Linol- und Linolens{\"a}ure, ferner wurden parallel Edukte, Intermediate und Produkte isoliert und hinsichtlich ihrer Stabilisotopengehalte durch Bestimmung der Delta-2H(V-SMOW)- und Delta-13C(V-PDB)-Werte untersucht. Zum anderen sind auf fermentativem Wege ausgehend von unterschiedlichen Kohlenhydratquellen die G{\"a}rungsalkohole 2-Phenylethanol und 2-Methyl-1-propanol dargestellt worden. Des weiteren galt es, die bei den G{\"a}rungsalkoholen resultierende Datenlage dahingehend zu pr{\"u}fen, ob sich diese {\"u}ber eine Korrelation der Delta-2H(V-SMOW)- und Delta-13C(V-PDB)-Werte dazu eignet, eine Authentizit{\"a}tsbewertung dieser Aromastoffe hinsichtlich nat{\"u}rlicher oder synthetischer Herkunft zu erm{\"o}glichen.}, subject = {Aroma}, language = {de} } @phdthesis{Raab2004, author = {Raab, Thomas}, title = {Untersuchungen zur Erdbeerfruchtreifung : Biosynthese von 4-Hydroxy-2,5-dimethyl-3(2H)-furanon und Enzymaktivit{\"a}ten w{\"a}hrend des Reifungsprozesses}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die Fruchtreifung stellt einen hochkomplexen Prozess dar, der durch eine Reihe von biochemischen und physiologischen Ver{\"a}nderungen gekennzeichnet ist. Dies umfasst bedeutende Ver{\"a}nderungen von Textur, Farbe sowie die Bildung von geschmacks- und geruchsaktiven Verbindungen. Die vorliegende Arbeit pr{\"a}sentiert neue Erkenntnisse zur Biosynthese von 4-Hydroxy-2,5-dimethyl-3(2H)-furanon (Furaneol®, HDMF), einer Schl{\"u}ssel-Aromakomponente der Erdbeere (Fragaria x ananassa). Daneben lieferten die durchgef{\"u}hrten Versuche den Nachweis einer Reihe enzymatischer Aktivit{\"a}ten in der Erdbeerfrucht und beleuchteten deren Entwicklung im Verlauf der Erdbeer-Fruchtreifung. Zum ersten Mal wurde ein Protein aus Erdbeerfr{\"u}chten isoliert, partiell sequenziert und seine Beteiligung an der enzymatischen Bildung von HDMF w{\"a}hrend der Fruchtreifung nachgewiesen.}, subject = {Erdbeere}, language = {de} } @phdthesis{Hauck2003, author = {Hauck, Tobias}, title = {Zuckerphosphate als Vorl{\"a}ufer von 4-Hydroxy-3(2H)-furanonen - Biochemische Transformation durch die Hefe Zygosaccharomyces rouxii und chemische Bildung unter physiologischen Bedingungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5871}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In der vorliegenden Arbeit werden instrumentell-analytische Studien zur enzymatischen und chemischen Bildung von 4-Hydroxy-2,5-dimethyl-3(2H)-furanon (HDMF) und 4-Hydroxy-5-methyl-3(2H)-furanon (HMF) - zwei wichtigen Aromakomponenten zahl-reicher Fr{\"u}chte und verarbeiteter Lebensmittel - vorgestellt. Die Studien demonstrieren erstmals die Bildung dieser Verbindungen aus Zuckerphosphaten unter physiologischen Reaktionsbedingungen. Ein Schwerpunkt der Arbeiten lag dabei auf der Bildung von HDMF aus D-Fructose-1,6-diphosphat (Fru-1,6-dP) durch den Hefestamm Zygosaccharomyces rouxii. Der Zusatz von 1-13C-Fru-1,6-dP bzw. 13C6-D-Glucose zum N{\"a}hrmedium der Hefe Z. rouxii zeigte, dass ausschließlich exogen zugesetztes Fru-1,6-dP durch die Hefe zu HDMF transformiert wird. Untersuchungen, in denen der Einfluss verschiedener Wachstumsbedingungen auf die HDMF-Bildung durch Z. rouxii getestet wurde, zeigten bez{\"u}glich der HDMF-Bildung ein pH-Optimum bei pH 5.1 sowie eine maximale Produktivit{\"a}t der Zellen bei einer NaCl-Konzentration von 20\%. Mittels einer neu entwickelten cKZE-Methode wurde f{\"u}r durch Z. rouxii gebildetes HDMF eine Enantiomerenanreicherung von 27\%ee nachgewiesen, was eine enantioselektive Biosynthese durch Enzymsysteme der Hefe impliziert. Als Grundvoraussetzung f{\"u}r den Nachweis einer Enantiomerenanreicherung im HDMF-Molek{\"u}l stellte sich ein schwach-saurer pH-Wert des w{\"a}ssrigen Mediums heraus. Dies konnte durch Ermittlung der Tautomerisierungsgeschwindigkeit des HDMF-Molek{\"u}ls mittels 1H-NMR-Spektroskopie belegt werden. Anhand von HPLC-MS/MS-Analysen wurde die Bildung von HMF in zellfreien cytosolischen Rohproteinextrakte aus Z. rouxii, welche mit Fru-1,6-dP und Nicotinamidadenindinucleotiden (NAD, NADH, NADP, NADPH) inkubiert worden waren, nachgewiesen. In Substratstudien wurde HMF nach Applikation von Fru-1,6-dP, D-Fructose-6-phosphat, D-Glucose-6-phosphat, 6-Phosphoglucons{\"a}ure, D-Ribose-5-phosphat (Rib-5-P) und D-Ribulose-1,5-diphosphat an cytosolische Proteinextrakte nachgewiesen. Die f{\"u}r die Transformationen der Hexosephosphate zu D-Ribulose-5-phosphat (Ribu-5-P) ben{\"o}tigten Enzyme Fructose-1,6-diphosphatase, Phosphohexose-Isomerase, Glucose-6-phosphat-Dehydrogenase und 6-Phosphoglucons{\"a}ure-Dehydrogenase konnten mittels spezifischer Enzymassays in den cytosolischen Extrakten nachgewiesen werden. Gebildetes Ribu-5-P wird im Folgenden spontan in HMF umgelagert (> 1\%). Die Inkubation von Phosphoribose-Isomerase mit Rib-5-P in Gegenwart von o-Phenylendiamin (o-PD) f{\"u}hrte zur Bildung von 2-Methyl-3-(1,2-dihydroxyethyl)-quinoxalin, das anhand seiner UV-, MS- und NMR-Daten eindeutig identifiziert wurde. Daraus konnte die Bildung von 4,5-Dihydroxy-2,3-pentandion (DPD) in den Reaktionsans{\"a}tzen abgeleitet werden, was durch die Synthese der entsprechenden deuterierten bzw. unmarkierten Alditolacetat-Derivate und anschließende HRGC-MS-Analyse abgesichert wurde. Durch Inkubation von 1-13C-Ribu-5-P bzw. 5-13C-Ribu-5-P mit o-PD und HPLC-MS/MS-Analyse der entstandenen Quinoxalinderivate konnte gezeigt werden, dass die Methylgruppe des DPD-Molek{\"u}ls infolge einer nicht-enzymatischen Phosphat-Eliminierung gebildet wird. Nach Applikation von o-PD an reife Tomaten wurde mittels HPLC-MS/MS ebenfalls 2-Methyl-3-(1,2-dihydroxyethyl)-quinoxalin detektiert. Dieses Ergebnis impliziert ein genuines Vorkommen von DPD in Tomaten, in deren Aromaextrakten auch HMF nachgewiesen wurde. Somit ist in nat{\"u}rlichen Systemen ebenfalls von einer HMF-Bildung {\"u}ber diese Zwischenverbindung auszugehen. Anhand von HPLC-UV-MS/MS-Analysen wurde eine selektive Bildung von HDMF aus Fru-1,6-dP in Gegenwart von NADH unter milden Reaktionsbedingungen nachgewiesen. Durch Inkubation von 1-13C-Fru-1,6-dP mit [4R,S-2H2]-NADH und anschließender HRGC-MS-Analyse des gebildeten isotopen-markierten HDMF konnte gezeigt werden, dass HDMF infolge eines nicht-enzymatischen Hydrid-Transfers von NADH auf eine aus Fru-1,6-dP abgeleitete Zwischenverbindung gebildet wird. Das Hydrid-Ion wird hierbei selektiv auf C-5 oder C-6 des Kohlenhydratgrundger{\"u}stes des Zuckerphosphates {\"u}bertragen. Der Zusatz von o-PD und Fru-1,6-dP zum Z. rouxii-N{\"a}hrmedium und anschließende HPLC-DAD-Analyse f{\"u}hrte zur Detektion von drei Quinoxalinderivaten. Diese wurden anhand ihrer MS/MS-Daten und NMR-Spektren als phosphorylierte Quinoxalinderivate identifiziert, aus denen sich die Bildung von 2-Hexosulose-6-phosphat, 1-Deoxy-2,3-hexodiulose-6-phosphat und 1,4-Dideoxy-2,3-hexodiulose-6-phosphat in den N{\"a}hrmedien ableiten ließ. Somit gelang erstmals der Beweis der Bildung von 1-Deoxy-2,3-hexodiulose-6-phosphat im N{\"a}hrmedium, einem vielfach postulierten, aber bislang nicht nachgewiesenen Intermediat der HDMF-Bildung aus Fru-1,6-dP. Aufgrund der enantioselektiven Bildung von HDMF durch die Hefen wird daher bei der HDMF-Biosynthese durch Z. rouxii von einer Kombination aus nicht-enzymatischen Reaktionsschritten und einer durch Oxidoreduktasen der Hefezellen vermittelten Reduktion ausgegangen.}, subject = {Zygosaccharomyces rouxii}, language = {de} } @phdthesis{Wein2001, author = {Wein, Martina}, title = {Biosynthese und Metabolismus von 2,5-Dimethyl-4-hydroxy-3(2H)-furanon in Erdbeeren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1182059}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Die vorliegende Arbeit pr{\"a}sentiert neue Erkenntnisse zur Biosynthese von 2,5-Dimethyl-4-hydroxy-3(2H)-furanon (DMHF) und 2,5-Dimethyl-4-methoxy-3(2H)-furanon (DMMF), zwei wichtigen Aromakomponenten in Erdbeeren. Potentielle, mit stabilen Isotopen markierte Vorl{\"a}ufersubstanzen wurden an Erdbeeren appliziert und drei Tage bei Raumtemperatur inkubiert. Der Nachweis {\"u}ber den erfolgreichen Einbau erfolgte mittels Gaschromatographie-Massenspektrometrie. Anhand der Massenspektren von DMHF und DMMF, die aus den behandelten Erdbeeren mittels Festphasenextraktion isoliert wurden, konnte der Markierungsgrad der Verbindungen ermittelt werden und somit R{\"u}ckschl{\"u}sse {\"u}ber die Effizienz der Metabolisierung der applizierten Zucker zu den beiden Furanonen DMHF und DMMF gezogen werden. Als m{\"o}gliche Ausgangsstoffe dienten unterschiedlich markierte D-Glucose und D-Fructose, sowie Desoxyzucker, da diese als direkte Vorl{\"a}ufersubstanzen von DMHF und DMMF diskutiert werden. Isotopenmarkierte Desoxy-D-glucose oder Desoxy-D-fructose sind kommerziell nicht erh{\"a}ltlich, weshalb die Verbindungen [1-13C]-1-Desoxy-D-fructose, [6-2H1]-6-Desoxy-D-glucose und [5,6,6,6-2H4]-6-Desoxyhexulose-1-phosphat zuerst synthetisiert werden mussten. Nach Applikation der Desoxyzucker wurde keine Erh{\"o}hung des Markierungsgrades an stabilen Isotopen gegen{\"u}ber dem nat{\"u}rlichen Isotopenverh{\"a}ltnis festgestellt. Somit k{\"o}nnen 6-Desoxy-D-glucose, 1-Desoxy-D-fructose und 6-Desoxy-D-fructose-1-phosphat als Prekursoren von DMHF und DMMF ausgeschlossen werden. Als gute Vorl{\"a}ufersubstanzen erwiesen sich D-Glucose und D-Fructose. Markierungen (13C und 2H) an Position C-1 oder C-6 der beiden Verbindungen wurden sowohl in DMHF als auch in dessen Methoxyderivat DMMF detektiert, wobei die Applikation von D-Fructose im Gegensatz zur D-Glucose einen h{\"o}heren Markierungsgrad der Zielverbindungen zur Folge hatte. Durch den Einsatz positionsspezifisch markierter D-Glucose (2H-Markierung an Position C-1, C-2 oder C-4) sollten Aufschl{\"u}sse {\"u}ber den Metabolisierungsmechanismus gewonnen werden. Die Markierung der D-[2-2H]Glucose befand sich wie die der D-[1-2H]Glucose in den Methylgruppen der Furanone, was nur durch eine intramolekulare Verschiebung von C-2 nach C-1 erkl{\"a}rbar ist. Diese wurde bei der Glucosephosphatisomerase-katalysierten Umwandlung von D-Glucose-6-phosphat zu D-Fructose-6-phosphat beobachtet. Somit muss D-Glucose bei der Biosynthese von DMHF und DMMF zuerst in diese Intermediate {\"u}berf{\"u}hrt werden. Im Gegensatz zu an Position C-2 markierter D-Glucose ging das Proton an Position C-4 im Laufe der Metabolisierung verloren. Demzufolge findet der in der Natur verbreitete Desoxygenierungsmechanismus von Monosacchariden nicht statt und schließt die Beteiligung von Desoxyzuckern an der Biosynthese von DMHF und DMMF g{\"a}nzlich aus. Nach Einsatz von uniform markierter D-Fructose konnte sechsfach markiertes DMHF und DMMF identifiziert werden, was durch den Einbau der intakten Kohlenstoffkette zu erkl{\"a}ren ist. Dieser Befund und weitere Untersuchungen mit verschiedenen Glykolyse-regulierenden Substanzen deuteten darauf hin, dass die Furanone dem zentralen Kohlenhydratstoffwechsel, der Glykolyse, entspringen. Vor der Aldolase-katalysierten Spaltung in zwei C3-Einheiten muss jedoch eine Abzweigung erfolgen, da sonst die Kohlenstoffkette nicht unver{\"a}ndert vorliegen k{\"o}nnte. Im zweiten Teil der Arbeit ist erstmals mit Hilfe von molekularbiologischen Techniken die vollst{\"a}ndige cDNA einer O-Methyltransferase (OMT) aus Erdbeeren isoliert worden. Hierf{\"u}r wurde mRNA aus reifenden Erdbeeren extrahiert und eine cDNA Bibliothek hergestellt. Diese wurde mit einer OMT-spezifschen Sonde durchmustert, welche durch PCR mit degenerierten Primern synthetisiert worden war. Nach mehreren Vereinzelungs-Zyklen konnte die vollst{\"a}ndige cDNA einer O-Methyltransferase (STOMT, Strawberry OMT) erhalten werden. Northern-Analysen ergaben, dass die entsprechende RNA ausschließlich in den verschiedenen Reifestadien der Frucht akkumuliert, mit den h{\"o}chsten Transkriptmengen in der rot-werdenden und reifen Frucht. In anderen Gewebeteilen wie Wurzel, Bl{\"a}tter, St{\"a}ngel und Bl{\"u}te konnte keine STOMT-RNA nachgewiesen werden. Das korrespondierende Protein zeigte hohe Homologien zu Kaffees{\"a}ure-OMTs aus Weidengew{\"a}chsen der Gattung Populus. Nach erfolgreicher, heterologer Expression von STOMT in E. coli wurde die Substratspezifit{\"a}t des Enzyms untersucht, dessen Temperaturoptimum bei 30°C lag. Alle eingesetzten Substrate mit phenolischem Grundger{\"u}st, wie Brenzcatechin, Kaffees{\"a}ure, Kaffeeoyl-CoA und 3,4-Dihydroxybenzaldehyd, aber auch das Furanonderivat DMHF wurden von der rekombinanten O-Methyltransferase umgesetzt. Als bestes Substrat erwies sich 3,4-Dihydroxybenzaldehyd, das, im Gegensatz zu dessen Methylierungsprodukt Vanillin, bisher in Erdbeeren nicht nachgewiesen werden konnte. Kaffees{\"a}ure wurde ebenfalls effektiv methyliert, worin vermutlich die Hauptaufgabe von STOMT in der Pflanze liegt. Die Methylierung von Kaffees{\"a}ure oder 5-Hydroxyferulas{\"a}ure ist ein wichtiger Prozess in der Entstehung von Lignin. Die Tatsache, dass Erdbeeren teilweise in den Leitb{\"u}ndeln und verst{\"a}rkt in den Achenen lignifiziert sind, erkl{\"a}rt das Vorhandensein eines solchen Enzyms. DMHF, das als Dienol-Tautomer eine aromatische Struktur mit Hydroxylgruppen aufweist und somit strukturelle {\"A}hnlichkeiten zu phenolischen Verbindungen zeigt, wurde ebenfalls von STOMT als Substrat akzeptiert. Die Bildung von DMMF, dem Methoxyderivat von DMHF erfolgte vergleichsweise langsam, war aber eindeutig auf die Methyltransferase-Aktivit{\"a}t zur{\"u}ckzuf{\"u}hren. STOMT ist aufgrund des Expressionsmusters als fruchtspezifisch und reifeinduziert einzustufen. Prim{\"a}re Funktion ist vermutlich zu Beginn der Fruchtreifung die Lignifizierung der Leitb{\"u}ndel und sp{\"a}ter die der Achenen. Gleichzeitig scheint STOMT wesentlich an der Bildung der Aromastoffe DMMF und Vanillin in Erdbeeren beteiligt zu sein.}, subject = {Erdbeere}, language = {de} }