@phdthesis{Mueller2013, author = {M{\"u}ller, Thomas M.}, title = {Computergest{\"u}tztes Materialdesign: Mikrostruktur und elektrische Eigenschaften von Zirkoniumdioxid-Aluminiumoxid Keramiken}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110942}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Mikrostruktur von Zirkonoxid-Aluminiumoxid Keramiken wurde im Rasterelektronenmikroskop (REM) untersucht und mittels quantitativer Bildanalyse weiter charakterisiert. Die so erhaltenen spezifischen morphologischen Kennwerte wurden mit denen, die an dreidimensionalen Modellstrukturen {\"a}quivalent gewonnen wurden, verglichen. Es wurden modifizierte Voronoistrukturen benutzt, um die beteiligten Phasen in repr{\"a}sentativen Volumenelementen (RVE) auf Voxelbasis zu erzeugen. Poren wurden an den Ecken und Kanten dieser Strukturen nachtr{\"a}glich hinzugef{\"u}g. Nachdem alle relevanten Kennwerte der Modellstrukturen an die realen keramischen Mikrostrukturen angepasst wurden, musste das RVE f{\"u}r die Finite Element Simulationen (FES) geeignet vernetzt werden. Eine einfache {\"U}bernahme der Voxelstrukturen in hexaedrische Elemente f{\"u}hrt zu sehr langen Rechenzeiten, und die erforderliche Genauigkeit der FES konnte nicht erreicht werden. Deshalb wurde zun{\"a}chst eine adaptive Oberfl{\"a}chenvernetzung ausgehend von einem generally classed marching tetrahedra Algorithmus erzeugt. Dabei wurde besonderer Wert auf die Beibehaltung der zuvor angepassten Kennwerte gelegt. Um die Rechenzeiten zu verk{\"u}rzen ohne die Genauigkeit der FES zu beeintr{\"a}chtigen, wurden die Oberfl{\"a}chenvernetzungen dergestalt vereinfacht, dass eine hohe Aufl{\"o}sung an den Ecken und Kanten der Strukturen erhalten blieb, w{\"a}hrend sie an flachen Korngrenzen stark verringert wurde. Auf Basis dieser Oberfl{\"a}chenvernetzung wurden Volumenvernetzungen, inklusive der Abbildung der Korngrenzen durch Volumenelemente, erzeugt und f{\"u}r die FES benutzt. Dazu wurde ein FE-Modell zur Simulation der Impedanzspektren aufgestellt und validiert. Um das makroskopische elektrische Verhalten der polykristallinen Keramiken zu simulieren, mussten zun{\"a}chst die elektrischen Eigenschaften der beteiligten Einzelphasen gemessen werden. Dazu wurde eine Anlage zur Impedanzspektroskopie bis 1000 °C aufgebaut und verwendet. Durch weitere Auswertung der experimentellen Daten unter besonderer Ber{\"u}cksichtigung der Korngrenzeffekte wurden die individuellen Phaseneigenschaften erhalten. Die Zusammensetzung der Mischkeramiken reichte von purem Zirkonoxid (3YSZ) bis zu purem Aluminiumoxid. Es wurde eine sehr gute {\"U}bereinstimmung zwischen den experimentellen und simulierten Werten bez{\"u}glich der betrachteten elektrischen, mechanischen und thermischen Eigenschaften erreicht. Die FES wurden verwendet, um die Einfl{\"u}sse verschiedener mikrostruktureller Parameter, wie Porosit{\"a}t, Korngr{\"o}ße und Komposition, auf das makroskopische Materialverhalten n{\"a}her zu untersuchen.}, subject = {Keramischer Werkstoff}, language = {de} } @phdthesis{Kallweit2008, author = {Kallweit, Ren{\´e}}, title = {Untersuchung des dielektrischen Verhaltens polymerbasierter elektrorheologischer Fl{\"u}ssigkeiten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36597}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Auf dem Forschungsgebiet der elektrorheologischen Fluide wurden verst{\"a}rkt Modelle auf der Basis statischer Systeme entwickelt. In diesen Modellen wird angenommen, dass die Par-tikel der ER-Suspension Ketten von einer Elektrode zur anderen ausbilden. {\"U}ber die elektro-statische Wechselwirkung der Partikel untereinander in Verbindung mit dem nicht-ohmschen Verhalten des Tr{\"a}ger{\"o}ls wurde dabei auf die Schubspannung und die Stromdich-te der ERF geschlossen. Diese Vorhersagen waren aufgrund der Vernachl{\"a}ssigung der Dy-namik nur bedingt aussagef{\"a}hig. In experimentellen Untersuchungen der Schubspannung und Stromdichte wurden die Abh{\"a}ngigkeiten von Scherrate, Feldst{\"a}rke und Spaltgeometrie n{\"a}her betrachtet. F{\"u}r ein besseres Verst{\"a}ndnis der ER-Eigenschaften wurden zudem die-lektrische Messungen (Impedanzmessungen) durchgef{\"u}hrt. Als Ergebnis dieser Messungen wurde eine dielektrische Aktivit{\"a}t der ERF im Frequenzbereich von 102 Hz bis 105 Hz f{\"u}r einen hohen ER-Effekt ermittelt. Der Realteil der Permittivit{\"a}t f{\"u}hrt in diesem Frequenz-fenster einen großen Sprung durch - dies ist {\"a}quivalent mit einem großen Imagin{\"a}rteil der Permittivit{\"a}t (dielektrischer Verlust ) oder einem großen tan \&\#61540;. In dieser Arbeit wurde f{\"u}r die Untersuchungen eine ERF mit Silikon{\"o}l als Tr{\"a}germedium und salzdotiertes Polyurethan als Partikelmaterial verwendet. Im ersten Teil der Arbeit steht die Identifikation der auftretenden Relaxationen - ermittelt durch die dielektrische Spektro-skopie - im Vordergrund. Dabei konnte eine Relaxation aufgrund der Salzdotierung, eine durch Kohlendioxid und Wasser und eine aufgrund des Polyurethans der Partikel nachge-wiesen werden. Da die Dotiersalzrelaxation den gr{\"o}ßten Beitrag des ER-Effektes verursacht, wurde diese im Rahmen der vorliegenden Arbeit n{\"a}her betrachtet. Sowohl Lage als auch St{\"a}rke der Relaxa-tion lassen sich durch die Partikelkonzentration, den Salzgehalt, die Salzart und durch eine Modifikation der Polymermatrix variieren. In {\"U}bereinstimmung mit Messungen am Rheo-meter lassen sich daraus die gew{\"u}nschten Eigenschaften, im Besonderen das Temperatur-verhalten und die St{\"a}rke der ERF, einstellen. Im Weiteren wurde aus den gewonnenen Ergebnissen der dielektrischen Spektroskopie in Verbindung mit rheologischen Messungen ein Schema entwickelt, mit dem es m{\"o}glich ist, aus der Lage und der St{\"a}rke der Salzrelaxation im Vergleich mit bekannten ERF auf die Schubspannung und die Stromdichte zu schließen. Somit ist zum ersten Mal eine Qualit{\"a}ts-kontrolle aufgrund der Basiseigenschaften der ERF m{\"o}glich. Im letzten Teil dieser Arbeit wurden die Unterschiede der Messungen in Scher- bzw. Fließ-modus und deren Ursachen beleuchtet. Hierbei konnte aufgezeigt werden, dass die Rotation der Partikel aufgrund der Scherbelastung in Kombination mit dem Str{\"o}mungsprofil f{\"u}r die unterschiedlichen Messergebnisse verantwortlich ist. Die Unterschiede sind so groß, dass sich kein konstanter Faktor ermitteln l{\"a}sst, um beide Messmodi miteinander zu vergleichen. Somit muss eine ERF immer in dem Modus charakterisiert werden, der der sp{\"a}teren Belas-tungsart entspricht, um so die korrekten Wert f{\"u}r die Schubspannung und die Stromdichte ermitteln zu k{\"o}nnen.}, subject = {Impedanzspektroskopie}, language = {de} }