@phdthesis{Paul2014, author = {Paul, Mila Marie}, title = {Vesikelverkehr in Aktiven Zonen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110791}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Aktive Zonen (AZs) sind hoch spezialisierte, subzellul{\"a}re Kompartimente von Neuronen, die der synaptischen {\"U}bertragung dienen. Sie enthalten Ger{\"u}stproteine wie RIM (Rab3 interacting molecule) sowie elektronendichte Projektionen bestehend aus Bruchpilot bei Drosophila melanogaster oder Bassoon im S{\"a}uger, welche Schl{\"u}sselkomponenten des Vesikelverkehrs darstellen. Bei der Fliege sind Anzahl und Verteilung von Bruchpilot-Molek{\"u}len in AZs relevant f{\"u}r die funktionelle Differenzierung. Ihre Anordnung wird im Abstand von weniger als einem Mikrometer innerhalb einer pr{\"a}synaptischen Endigung reguliert. Im Rahmen der vorliegenden Arbeit wurden elektrophysiologische Ableitungen und konfokale sowie h{\"o}chstaufl{\"o}sende, immunhistochemische Bildgebung mit dem dSTORM (direct Stochastic Optical Reconstruction Microscopy) Verfahren an larvalen, neuromuskul{\"a}ren Synapsen von Drosophila durchgef{\"u}hrt. Dabei wurde das genetische Potenzial des Modellorganismus genutzt, um relevante Proteinfunktionen und -interaktionen zu analysieren. RIM als zentrale Komponente Aktiver Zonen ist relevant f{\"u}r synaptische Plastizit{\"a}t. Eine als CORD7 (cone-rod dystrophy type 7) bezeichnete Punktmutation (Arginin zu Histidin) innerhalb der 310 Helix der C2A-Dom{\"a}ne von RIM wurde mit erh{\"o}hten kognitiven F{\"a}higkeiten einer Patientengruppe in Verbindung gebracht. Weil die Drosophila C2A-Dom{\"a}ne eine hohe Homologie zur S{\"a}ugerdom{\"a}ne aufweist, konnte der Einfluss dieser Mutation auf Struktur und Funktion von Synapsen untersucht werden. Es zeigte sich, dass der Aminos{\"a}ureaustausch der CORD7-Position und des benachbarten Arginin-Restes die synaptische Organisation und Transmission beeinflussen. In einer Reihe weiterer Experimente wurde das Zusammenspiel von Bruchpilot und Synaptotagmin, dem Calciumsensor der evozierten Transmitterfreisetzung, analysiert. W{\"a}hrend AZs ohne Bruchpilot auch ohne Synaptotagmin funktionieren, f{\"u}hrt dessen Reduktion zu einer Umverteilung von Bruchpilot-Molek{\"u}len innerhalb von AZs und zu dramatischen {\"A}nderungen in ihrer Anzahl. Abschließend wurde so ein Beitrag zum Verst{\"a}ndnis der molekularen Organisation synaptischer Informationsverarbeitung und Plastizit{\"a}t geleistet, wobei zu kl{\"a}ren bleibt, wie die zuverl{\"a}ssige Speicherung von Informationen an AZs erreicht werden kann.}, subject = {Aktive Zonen}, language = {de} } @phdthesis{Mrestani2022, author = {Mrestani, Achmed}, title = {Strukturelle Differenzierung und Plastizit{\"a}t pr{\"a}synaptischer Aktiver Zonen}, doi = {10.25972/OPUS-23578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235787}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Ziel der vorliegenden Arbeit war die nanoskopische Analyse struktureller Differenzierung und Plastizit{\"a}t pr{\"a}synaptischer aktiver Zonen (AZs) an der NMJ von Drosophila melanogaster mittels hochaufl{\"o}sender, lichtmikroskopischer Bildgebung von Bruchpilot (Brp). In erster Linie wurde das lokalisationsmikroskopische Verfahren dSTORM angewendet. Es wurden neue Analyse-Algorithmen auf der Basis von HDBSCAN entwickelt, um eine objektive, in weiten Teilen automatisierte Quantifizierung bis auf Ebene der Substruktur der AZ zu erm{\"o}glichen. Die Differenzierung wurde am Beispiel phasischer und tonischer Synapsen, die an dieser NMJ durch Is- und Ib-Neurone gebildet werden, untersucht. Phasische Is-Synapsen mit hoher Freisetzungswahrscheinlichkeit zeigten kleinere, kompaktere AZs mit weniger Molek{\"u}len und h{\"o}herer molekularer Dichte mit ebenfalls kleineren, kompakteren Brp-Subclustern. Akute strukturelle Plastizit{\"a}t wurde am Beispiel pr{\"a}synaptischer Hom{\"o}ostase, bei der es zu einer kompensatorisch erh{\"o}hten Neurotransmitterfreisetzung kommt, analysiert. Interessanterweise zeigte sich hier ebenfalls eine kompaktere Konfiguration der AZ, die sich auch auf Ebene der Subcluster widerspiegelte, ohne Rekrutierung von Molek{\"u}len. Es konnte demonstriert werden, dass sich eine h{\"o}here Molek{\"u}ldichte in der Lokalisationsmikroskopie in eine h{\"o}here Intensit{\"a}t und gr{\"o}ßere Fl{\"a}che in der konfokalen Mikroskopie {\"u}bersetzt, und damit der Zusammenhang zu scheinbar gegens{\"a}tzlichen Vorbefunden hergestellt werden. Die Verdichtung bzw. Kompaktierung erscheint im Zusammenhang mit der Kopplungsdistanz zwischen VGCCs und pr{\"a}synaptischen Vesikeln als plausibles Muster der effizienten Anordnung molekularer Komponenten der AZ. Die hier eingef{\"u}hrten Analysewerkzeuge und molekularbiologischen Strategien, basierend auf dem CRISPR/Cas9-System, zur Markierung von AZ-Komponenten k{\"o}nnen zuk{\"u}nftig zur weiteren Kl{\"a}rung der Bedeutung der molekularen Verdichtung als allgemeines Konzept der AZ-Differenzierung beitragen.}, subject = {Synapse}, language = {de} }