@phdthesis{Platte2012, author = {Platte, Daniela}, title = {Grenzfl{\"a}chenselektive Verkapselung von anorganischen Latentw{\"a}rmespeichermaterialien mit Hybridpolymeren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Arbeit wurde ein prinzipieller Zugang zur Mikroverkapselung anorganischer Latentw{\"a}rmespeichermaterialien (LWS) erarbeitet. Dazu wurden zwei basische, kristallwasserreiche Salzhydrate mit Schmelztemperaturen im Umgebungstemperaturbereich als Kernmaterialien und anorganisch-organische Hybridpolymere mit kovalent verbundenen anorganischen und organischen Struktureinheiten (ORMOCER®e) als Verkapselungsmaterial verwendet. Der Prozess verl{\"a}uft grenzfl{\"a}chenselektiv in der fl{\"u}ssigen Phase, initiiert durch die basischen LWS, in Form einer auch bei milden Temperaturen ablaufenden Michael-Typ-Addition zwischen Acrylat- (Acr) und Thiolmonomeren (SH). Optimierte Verkapselungsergebnisse wurden mit Hybridmonomeren erreicht, deren funktionelle Gruppen in einem unst{\"o}chiometrischen Verh{\"a}ltnis von Acr:SH ≈ 5:1 vorlagen und {\"u}ber das anorganische R{\"u}ckgrat vorverkn{\"u}pft waren. Bei Verwendung eines Mikrodosiersystems wurden gleichm{\"a}ßige, geschlossene Mikrokapseln mit Durchmessern von etwa 40-50 µm bei Schichtdicken von < 5 µm erhalten. Aufgrund einer zu geringen inh{\"a}renten Barrierewirkung der verwendeten Hybridpolymere gegen{\"u}ber Wasserdampf konnten jedoch erhebliche Kristallwasserverluste nicht verhindert werden, sodass die erhaltenen Mikrokapseln noch nicht zur Anwendung als LWS geeignet sind. Da die beobachtete Tolerierung und sogar Bevorzugung f{\"u}r das deutliche Missverh{\"a}ltnis zwischen den polymerisierenden Gruppen f{\"u}r eine Stufenpolymerisation sehr ungew{\"o}hnlich ist, wurden an Modellsystemen Untersuchungen zur Aufkl{\"a}rung des Reaktionsmechanismus vorgenommen. Dazu wurde zun{\"a}chst ein Mercaptosiloxan (MS) hergestellt, dessen Ringgr{\"o}ßen- bzw. Funktionalit{\"a}tsverteilung mittels 29Si-NMR- und GPC-Messungen sehr gut aufgekl{\"a}rt werden konnte. Dieses wurde f{\"u}r Verkapselungsversuche mit Trimethylolpropantriacrylat (TMPTA) kombiniert und das Verh{\"a}ltnis funktioneller Gruppen Acr:SH systematisch variiert. An den erhaltenen Proben konnte via µ-Raman-Tiefenscan-Untersuchungen der Einfluss der Harzzusammensetzung auf die Kapselschichten aufgekl{\"a}rt werden. W{\"a}hrend bei Acr:SH = 1:1 maximale Schichtdicken erhalten wurden, ergaben sich bei Acrylat{\"u}berschuss von 4:1 bis 6:1 optimierte Schichten im Sinne der Vorgaben, die gleichm{\"a}ßig d{\"u}nn und vollst{\"a}ndig waren. Bei Thiol{\"u}berschuss wurden dagegen keine vollst{\"a}ndig ausgebildeten Schichten erhalten. Das f{\"u}r die LWS-Verkapselungen verwendete Modellsystem TMPTA/MS wurde zus{\"a}tzlich in Volumenpolymerisationen in homogener organischer Phase untersucht, die mit der Base Triethylamin initiiert wurden. Dabei wurden die st{\"o}chiometriebezogenen Vergelungsgrenzen bestimmt. Die detektierte Grenze bei Acr:SH < 5:1 f{\"u}r Acrylat{\"u}berschuss lag signifikant unterhalb von Verh{\"a}ltnissen funktioneller Gruppen, f{\"u}r die in Verkapselungsversuchen noch geschlossene Schichten erhalten wurden. Entlang der fl{\"u}ssig-fl{\"u}ssig-Grenzfl{\"a}che wird somit der Gelpunkt lokal innerhalb eines breiteren Bereichs des Verh{\"a}ltnisses funktioneller Gruppen in der Harzmischung erreicht, als bei einer Polymerisation im gesamten Volumen. Durch weitergehende Untersuchungen zum Vernetzungsverhalten in Abh{\"a}ngigkeit vom Verh{\"a}ltnis funktioneller Gruppen weiterer Acrylat- und Thiolmonomere mit anderen (durchschnittlichen) Funktionalit{\"a}ten konnte das grunds{\"a}tzliche Vorliegen eines Stufenmechanismus untermauert werden. Aus einer Kombination der Flory-Stockmayer-Theorie mit der Carothers'schen Gleichung konnten theoretische Vergelungsgrenzintervalle hergeleitet werden. Die experimentell bestimmten Vergelungsgrenzen standen in vollst{\"a}ndiger {\"U}bereinstimmung mit den theoretisch errechneten Intervallen. Innerhalb des Modellsystems TMPTA/MS konnten zudem weitere Materialeigenschaften bestimmt und zus{\"a}tzliche Erkenntnisse zum Vernetzungsverhalten gewonnen werden. Durch In-situ-Messungen mittels µ-Raman-Spektroskopie wurde die Entwicklung der Umsetzungsgrade N(C=C) und N(S-H) von Acrylat und Thiol im Verlauf der Reaktionszeit untersucht. Dabei wurden einige Einschr{\"a}nkungen der verwendeten Messmethode identifiziert und beschrieben. Mittels in-situ-mechanischer Spektroskopie nach Chambon und Winter konnte weiterhin das Vergelungsverhalten des Systems in Abh{\"a}ngigkeit von Monomerzusammensetzung, Initiatorkonzentration und Temperatur und Unterschiede innerhalb der kritischen Gele systematisch charakterisiert werden. Die stabilsten kritischen Gele und k{\"u}rzesten Gelzeiten wurden f{\"u}r hohe Basenkonzentrationen und bei st{\"o}chiometrischem Monomerverh{\"a}ltnis, aber auch f{\"u}r Acrylat{\"u}berschuss bis Acr:SH = 3:1, erhalten. Damit konnte auch innerhalb der Volumenpolymerisationen eine Bevorzugung des untersuchten Monomersystems f{\"u}r Acrylat{\"u}berschuss nachgewiesen werden. Weiterhin wurde das Geschwindigkeitsgesetz der Reaktion aufgekl{\"a}rt. Es ergab sich bis zum Gelpunkt, zu je erster Ordnung in den beiden Monomeren und der Initiatorbase. Außerdem wurde die Aktivierungsenthalpie der Polymerisation in homogener Phase mittels einer Arrhenius-Auftragung bestimmt.}, subject = {Stufenwachstums-Polymerisation}, language = {de} }