@article{AvotadeLiraSchneiderSchaulies2019, author = {Avota, Elita and de Lira, Maria Nathalia and Schneider-Schaulies, Sibylle}, title = {Sphingomyelin breakdown in T cells: role of membrane compartmentalization in T cell signaling and interference by a pathogen}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {152}, issn = {2296-634X}, doi = {10.3389/fcell.2019.00152}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199168}, year = {2019}, abstract = {Sphingolipids are major components of cellular membranes, and at steady-state level, their metabolic fluxes are tightly controlled. On challenge by external signals, they undergo rapid turnover, which substantially affects the biophysical properties of membrane lipid and protein compartments and, consequently, signaling and morphodynamics. In T cells, external cues translate into formation of membrane microdomains where proximal signaling platforms essential for metabolic reprograming and cytoskeletal reorganization are organized. This review will focus on sphingomyelinases, which mediate sphingomyelin breakdown and ensuing ceramide release that have been implicated in T-cell viability and function. Acting at the sphingomyelin pool at the extrafacial or cytosolic leaflet of cellular membranes, acid and neutral sphingomyelinases organize ceramide-enriched membrane microdomains that regulate T-cell homeostatic activity and, upon stimulation, compartmentalize receptors, membrane proximal signaling complexes, and cytoskeletal dynamics as essential for initiating T-cell motility and interaction with endothelia and antigen-presenting cells. Prominent examples to be discussed in this review include death receptor family members, integrins, CD3, and CD28 and their associated signalosomes. Progress made with regard to experimental tools has greatly aided our understanding of the role of bioactive sphingolipids in T-cell biology at a molecular level and of targets explored by a model pathogen (measles virus) to specifically interfere with their physiological activity.}, language = {en} } @article{DerakhshaniKurzJaptoketal.2019, author = {Derakhshani, Shaghayegh and Kurz, Andreas and Japtok, Lukasz and Schumacher, Fabian and Pilgram, Lisa and Steinke, Maria and Kleuser, Burkhard and Sauer, Markus and Schneider-Schaulies, Sibylle and Avota, Elita}, title = {Measles virus infection fosters dendritic cell motility in a 3D environment to enhance transmission to target cells in the respiratory epithelium}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {1294}, doi = {10.3389/fimmu.2019.01294}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201818}, year = {2019}, abstract = {Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit.}, language = {en} } @article{GrafenSchumacherChithelenetal.2019, author = {Grafen, Anika and Schumacher, Fabian and Chithelen, Janice and Kleuser, Burkhard and Beyersdorf, Niklas and Schneider-Schaulies, J{\"u}rgen}, title = {Use of acid ceramidase and sphingosine kinase inhibitors as antiviral compounds against measles virus infection of lymphocytes in vitro}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {218}, issn = {2296-634X}, doi = {10.3389/fcell.2019.00218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196099}, year = {2019}, abstract = {As structural membrane components and signaling effector molecules sphingolipids influence a plethora of host cell functions, and by doing so also the replication of viruses. Investigating the effects of various inhibitors of sphingolipid metabolism in primary human peripheral blood lymphocytes (PBL) and the human B cell line BJAB we found that not only the sphingosine kinase (SphK) inhibitor SKI-II, but also the acid ceramidase inhibitor ceranib-2 efficiently inhibited measles virus (MV) replication. Virus uptake into the target cells was not grossly altered by the two inhibitors, while titers of newly synthesized MV were reduced by approximately 1 log (90\%) in PBL and 70-80\% in BJAB cells. Lipidomic analyses revealed that in PBL SKI-II led to increased ceramide levels, whereas in BJAB cells ceranib-2 increased ceramides. SKI-II treatment decreased sphingosine-1-phosphate (S1P) levels in PBL and BJAB cells. Furthermore, we found that MV infection of lymphocytes induced a transient (0.5-6 h) increase in S1P, which was prevented by SKI-II. Investigating the effect of the inhibitors on the metabolic (mTORC1) activity we found that ceranib-2 reduced the phosphorylation of p70 S6K in PBL, and that both inhibitors, ceranib-2 and SKI-II, reduced the phosphorylation of p70 S6K in BJAB cells. As mTORC1 activity is required for efficient MV replication, this effect of the inhibitors is one possible antiviral mechanism. In addition, reduced intracellular S1P levels affect a number of signaling pathways and functions including Hsp90 activity, which was reported to be required for MV replication. Accordingly, we found that pharmacological inhibition of Hsp90 with the inhibitor 17-AAG strongly impaired MV replication in primary PBL. Thus, our data suggest that treatment of lymphocytes with both, acid ceramidase and SphK inhibitors, impair MV replication by affecting a number of cellular activities including mTORC1 and Hsp90, which alter the metabolic state of the cells causing a hostile environment for the virus.}, language = {en} } @article{TiwarekarFehrholzSchneiderSchaulies2019, author = {Tiwarekar, Vishakha and Fehrholz, Markus and Schneider-Schaulies, J{\"u}rgen}, title = {KDELR2 competes with measles virus envelope proteins for cellular chaperones reducing their chaperone-mediated cell surface transport}, series = {Viruses}, volume = {11}, journal = {Viruses}, number = {1}, issn = {1999-4915}, doi = {10.3390/v11010027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197468}, pages = {27}, year = {2019}, abstract = {Recently, we found that the cytidine deaminase APOBEC3G (A3G) inhibits measles (MV) replication. Using a microarray, we identified differential regulation of several host genes upon ectopic expression of A3G. One of the up-regulated genes, the endoplasmic reticulum (ER) protein retention receptor KDELR2, reduced MV replication ~5 fold when it was over-expressed individually in Vero and CEM-SS T cells. Silencing of KDELR2 in A3G-expressing Vero cells abrogated the antiviral activity induced by A3G, confirming its role as an A3G-regulated antiviral host factor. Recognition of the KDEL (Lys-Asp-Glu-Leu) motif by KDEL receptors initiates the retrograde transport of soluble proteins that have escaped the ER and play an important role in ER quality control. Although KDELR2 over-expression reduced MV titers in cell cultures, we observed no interaction between KDELR2 and the MV hemagglutinin (H) protein. Instead, KDELR2 retained chaperones in the ER, which are required for the correct folding and transport of the MV envelope glycoproteins H and fusion protein (F) to the cell surface. Our data indicate that KDELR2 competes with MV envelope proteins for binding to calnexin and GRP78/Bip, and that this interaction limits the availability of the chaperones for MV proteins, causing the reduction of virus spread and titers.}, language = {en} } @phdthesis{Tiwarekar2019, author = {Tiwarekar, Vishakha Rakesh}, title = {The APOBEC3G-regulated host factors REDD1 and KDELR2 restrict measles virus replication}, doi = {10.25972/OPUS-17952}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Measles is an extremely contagious vaccine-preventable disease responsible for more than 90000 deaths worldwide annually. The number of deaths has declined from 8 million in the pre-vaccination era to few thousands every year due to the highly efficacious vaccine. However, this effective vaccine is still unreachable in many developing countries due to lack of infrastructure, while in developed countries too many people refuse vaccination. Specific antiviral compounds are not yet available. In the current situation, only an extensive vaccination approach along with effective antivirals could help to have a measles-free future. To develop an effective antiviral, detailed knowledge of viral-host interaction is required. This study was undertaken to understand the interaction between MV and the innate host restriction factor APOBEC3G (A3G), which is well-known for its activity against human immunodeficiency virus (HIV). Restriction of MV replication was not attributed to the cytidine deaminase function of A3G, instead, we identified a novel role of A3G in regulating cellular gene functions. Among two of the A3G regulated host factors, we found that REDD1 reduced MV replication, whereas, KDELR2 hampered MV haemagglutinin (H) surface transport thereby affecting viral release. REDD1, a negative regulator of mTORC1 signalling impaired MV replication by inhibiting mTORC1. A3G regulated REDD1 expression was demonstrated to inversely correlate with MV replication. siRNA mediated silencing of A3G in primary human blood lymphocytes (PBL) reduced REDD1 levels and simultaneously increased MV titres. Also, direct depletion of REDD1 improved MV replication in PBL, indicating its role in A3G mediated restriction of MV. Based on these finding, a new role of rapamycin, a pharmacological inhibitor of mTORC1, was uncovered in successfully diminishing MV replication in Vero as well as in human PBL. The ER and Golgi resident receptor KDELR2 indirectly affected MV by competing with MV-H for cellular chaperones. Due to the sequestering of chaperones by KDELR2, they can no longer assist in MV-H folding and subsequent surface expression. Taken together, the two A3G-regulated host factors REDD1 and KDELR2 are mainly responsible for mediating its antiviral activity against MV.}, language = {en} }