@article{Zonneveld2019, author = {Zonneveld, Ben J. M.}, title = {The DNA weights per nucleus (genome size) of more than 2350 species of the Flora of The Netherlands, of which 1370 are new to science, including the pattern of their DNA peaks}, series = {Forum Geobotanicum}, volume = {8}, journal = {Forum Geobotanicum}, issn = {1867-9315}, doi = {10.3264/FG.2019.1022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189724}, pages = {24-78}, year = {2019}, abstract = {Besides external characteristics and reading a piece of DNA (barcode), the DNA weight per nucleus (genome size) via flow cytometry is a key value to detect species and hybrids and determine ploidy. In addition, the DNA weight appears to be related to various properties, such as the size of the cell and the nucleus, the duration of mitosis and meiosis and the generation time. Sometimes it is even possible to distinguish between groups or sections, which can lead to new classification of the genera. The variation in DNA weight is also useful to analyze biodiversity, genome evolution and relationships between related taxa. Moreover, it is important to know how large a genome is before one determines the base sequence of the DNA of a plant. Flow cytometry is also important for understanding fundamental processes in plants such as growth and development and recognizing chimeras. In the literature, DNA weight measurements are usually limited to one genus and often only locally (Siljak et al. 2010; Bai et al. 2012). In this study, however, it was decided to investigate all vascular plants from one country. This can also contribute to the protection of rare plants. This study is the first flora in the world whose weight of DNA per nucleus and peak patterns has been determined. More than 6400 plants, representing more than 2350 (sub)species (more than 90\%) have been collected, thanks to the help of almost 100 volunteers of Floristisch Onderzoek Nederland (Floron). Multiple specimens of many species have therefore been measured, preferably from different populations, in some cases more than fifty. For 1370 species, these values were not previously published. Moreover, a good number of the remaining 45\% are new for The Netherlands. In principle, each species has a fixed weight of DNA per nucleus. It has also been found that, especially between the genera, there are strong differences in the number of peaks that determine the DNA weight, from one to five peaks. This indicates that in a plant or organ there are sometimes nuclei with multiples of its standard DNA weight (multiple ploidy levels). It is impossible to show graphs of more than 2350 species. Therefore, we have chosen to show the peak pattern in a new way in a short formula. Within most genera there are clear differences in the DNA weights per nucleus between the species, in some other genera the DNA weight is hardly variable. Based on about twenty genera that were previously measured completely in most cases ('t Hart et al. 2003: Veldkamp and Zonneveld 2011; Soes et al. 2012; Dirkse et al. 2014, 2015; Verloove et al. 2017; Zonneveld [et al.] 2000-2018), it can be noted that even if all species of a genus have the same number of chromosomes, there can still be a difference of up to three times in the weight of the DNA. Therefore, a twice larger DNA weight does not have to indicate four sets of chromosomes. Finally, this research has also found clues to examine further the current taxonomy of a number of species or genera.}, subject = {Pflanzen}, language = {en} } @phdthesis{Zilker2019, author = {Zilker, Markus}, title = {The stability of finished pharmaceutical products and drug substances beyond their labeled expiry dates}, doi = {10.25972/OPUS-18069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180695}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Upon approval of a drug, the stability of the API and the FPP has to be studied intensively because it determines the shelf-life. If a drug is found to be stable, the expiry date is arbitrary set to five years at the maximum, if a drug tends to undergo degradation, the expiry date is set shorter. The drug product must comply with predefined specifications in accordance with the ICH guidelines Q6A and Q6B during its entire market life. The content of the active substance is required to be within a specification of 95-105\% of its labeled claim until expiry corresponding to the ICH guideline Q1A(R2). However, there is little or scattered literature information addressing the stability of drug products beyond their expiry dates. The objective of this thesis was to study and assess the long-term stability of a collection involving numerous pure drug substances and ampoules manufactured in the 20th century. The content and the impurity profile were examined by means of appropriate analytical methods, mainly using liquid chromatography. The results were compared to data being available in the literature. Assessing the stability regarding the dosage form and the affiliation of the drug class was conducted. The experimental studies comprise the examination of 50 drug substances manufactured 20-30 years ago and 14 long expired ampoules which were older than 40 years in the time of analysis, exceeding many times the maximum shelf life of five years. For investigation of the solid drug substances, pharmacopoeial methods were applied as far as possible. Indeed, results of the study showed that 44 tested substances still complied with the specification of the Ph. Eur. with regard to the content and impurity profile, even after more than two decades of storage. For analysis of the injection solutions, HPLC-UV and HPLC-ESI/MS techniques were applied, commonly based on liquid chromatography methods of the Ph. Eur. for determination of related substances. Each method was further validated for its application to ensure accurate API quantification corresponding to ICH Q2(R1). Quite a few ampoules were identified to show surprisingly high stability. In spite of their age of 53-72 years, APIs such as caffeine, etilefrine, synephrine, metamizole sodium, furosemide, and sodium salicylate complied with the specified content that is valid nowadays, respectively. Nevertheless, typical degradation reaction, e.g. hydrolysis, oxidation, or isomerization, was observed in all remaining ampoules. Various degrees of hydrolysis were revealed for scopolamine, procaine, and adenosine triphosphate, the contents were decreased to 71\%, 70\%, and 15\% of the declared concentrations, respectively. In the epinephrine and dipyridamole ampoules, oxidative degradation has been occurred, finding respective API contents of more or less 70\%. For dihydroergotamine, excessive decomposition by epimerization was observed, resulting in an API content of 21\% and degradation by isomerization was found in lobeline, still containing 64\% of the labeled claim. In conclusion, supported by the data of the present studies and the literature, defining and authorizing a longer shelf-life may be applicable to numerous pharmaceuticals which should be considered by pharmaceutical manufacturers and regulatory authorities, if justified based on stability studies. A general extension of the shelf-lives of drug products and the abolishment or extension of the maximum shelf-life limit of five years would prevent disposing of still potent medications and save a lot of money to the entire health care system.}, subject = {Stabilit{\"a}t}, language = {en} } @article{ZhouWuchterEgereretal.2019, author = {Zhou, Xiang and Wuchter, Patrick and Egerer, Gerlinde and Kriegsmann, Mark and Mataityte, Aiste and Koelsche, Christian and Witzens-Harig, Mathias and Kriegsmann, Katharina}, title = {Role of virological serum markers in patients with both hepatitis B virus infection and diffuse large B-cell lymphoma}, series = {European Journal of Haematology}, volume = {103}, journal = {European Journal of Haematology}, number = {4}, doi = {10.1111/ejh.13300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258442}, pages = {410-416}, year = {2019}, abstract = {Background Causality between hepatitis B virus (HBV) infection and diffuse large B-cell lymphoma (DLBCL) was reported in various studies. However, the implication of different virological serum markers of HBV infection in patients with both HBV infection and DLBCL is not fully understood. The aim of this study was to investigate the impact of HBV markers on overall survival (OS) and progression-free survival (PFS) in patients with both HBV infection and DLBCL. Methods In this study, patients (n = 40) diagnosed with both HBV infection and DLBCL were identified between 2000 and 2017. Six patients with hepatitis C virus (HCV) and/or human immunodeficiency virus (HIV) co-infection were excluded from this study. We retrospectively analyzed patients' demographic characteristics, treatment, and the prognostic impact of different HBV markers at first diagnosis of DLBCL (HBsAg, anti-HBs, HBeAg, anti-HBe, and HBV-DNA) on OS and PFS. Results The majority of patients (n = 21, 62\%) had advanced disease stage (III/IV) at diagnosis. In the first-line therapy, 24 patients (70\%) were treated with R-CHOP regimen (rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisolone). HBeAg positive patients had a trend toward inferior OS and PFS compared with HBeAg negative patients. Anti-HBe positive patients had a statistically significant better OS and PFS compared with anti-HBe negative group (both P < .0001). Viremia with HBV-DNA ≥ 2 × 107 IU/L had a significant negative impact on OS and PFS (both P < .0001). Conclusion High activity of viral replication is associated with a poor survival outcome of patients with both HBV infection and DLBCL.}, language = {en} } @article{ZhangZhengZhengetal.2019, author = {Zhang, Yonghong and Zheng, Lanlan and Zheng, Yan and Zhou, Chao and Huang, Ping and Xiao, Xiao and Zhao, Yongheng and Hao, Xincai and Hu, Zhubing and Chen, Qinhua and Li, Hongliang and Wang, Xuanbin and Fukushima, Kenji and Wang, Guodong and Li, Chen}, title = {Assembly and Annotation of a Draft Genome of the Medicinal Plant Polygonum cuspidatum}, series = {Frontiers in Plant Science}, volume = {10}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189279}, pages = {1274}, year = {2019}, abstract = {Polygonum cuspidatum (Japanese knotweed, also known as Huzhang in Chinese), a plant that produces bioactive components such as stilbenes and quinones, has long been recognized as important in traditional Chinese herbal medicine. To better understand the biological features of this plant and to gain genetic insight into the biosynthesis of its natural products, we assembled a draft genome of P. cuspidatum using Illumina sequencing technology. The draft genome is ca. 2.56 Gb long, with 71.54\% of the genome annotated as transposable elements. Integrated gene prediction suggested that the P. cuspidatum genome encodes 55,075 functional genes, including 6,776 gene families that are conserved in the five eudicot species examined and 2,386 that are unique to P. cuspidatum. Among the functional genes identified, 4,753 are predicted to encode transcription factors. We traced the gene duplication history of P. cuspidatum and determined that it has undergone two whole-genome duplication events about 65 and 6.6 million years ago. Roots are considered the primary medicinal tissue, and transcriptome analysis identified 2,173 genes that were expressed at higher levels in roots compared to aboveground tissues. Detailed phylogenetic analysis demonstrated expansion of the gene family encoding stilbene synthase and chalcone synthase enzymes in the phenylpropanoid metabolic pathway, which is associated with the biosynthesis of resveratrol, a pharmacologically important stilbene. Analysis of the draft genome identified 7 abscisic acid and water deficit stress-induced protein-coding genes and 14 cysteine-rich transmembrane module genes predicted to be involved in stress responses. The draft de novo genome assembly produced in this study represents a valuable resource for the molecular characterization of medicinal compounds in P. cuspidatum, the improvement of this important medicinal plant, and the exploration of its abiotic stress resistance.}, language = {en} } @article{ZhangMichailSaaletal.2019, author = {Zhang, Fangyuan and Michail, Evripidis and Saal, Fridolin and Krause, Ana-Maria and Ravat, Prince}, title = {Stereospecific Synthesis and Photophysical Properties of Propeller-Shaped C\(_{90}\)H\(_{48}\) PAH}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {71}, doi = {10.1002/chem.201904962}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208682}, pages = {16241-16245}, year = {2019}, abstract = {Herein, we have synthesized an enantiomerically pure propeller-shaped PAH, C\(_{90}\)H\(_{48}\), possessing three [7]helicene and three [5]helicene subunits. This compound can be obtained in gram quantities in a straightforward manner. The photophysical and chiroptical properties were investigated using UV/Vis absorption and emission, optical rotation and circular dichroism spectroscopy, supported by DFT calculations. The nonlinear optical properties were investigated by two-photon absorption measurements using linearly and circularly polarized light. The extremely twisted structure and packing of the homochiral compound were investigated by single-crystal X-ray diffraction analysis.}, language = {en} } @article{ZetzlSchulerRenneretal.2019, author = {Zetzl, Teresa and Schuler, Michael and Renner, Agnes and Jentschke, Elisabeth and van Oorschot, Birgitt}, title = {Yoga intervention and reminder e-mails for reducing cancer-related fatigue - a study protocol of a randomized controlled trial}, series = {BMC Psychology}, volume = {7}, journal = {BMC Psychology}, doi = {10.1186/s40359-019-0339-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202268}, pages = {64}, year = {2019}, abstract = {Background Almost 90\% of cancer patients suffer from symptoms of fatigue during treatment. Supporting treatments are increasingly used to alleviate the burden of fatigue. This study examines the short-term and long-term effects of yoga on fatigue and the effect of weekly reminder e-mails on exercise frequency and fatigue symptoms. Methods The aim of the first part of the study will evaluate the effectiveness of yoga for cancer patients with mixed diagnoses reporting fatigue. We will randomly allocate 128 patients to an intervention group (N = 64) receiving yoga and a wait-list control group (N = 64) receiving yoga 9 weeks later. The yoga therapy will be performed in weekly sessions of 60 min each for 8 weeks. The primary outcome will be self-reported fatigue symptoms. In the second part of the study, the effectiveness of reminder e-mails with regard to the exercise frequency and self-reported fatigue symptoms will be evaluated. A randomized allocated group of the participants ("email") receives weekly reminder e-mails, the other group does not. Data will be assessed using questionnaires the beginning and after yoga therapy as well as after 6  months. Discussion Support of patients suffering from fatigue is an important goal in cancer patients care. If yoga therapy will reduce fatigue, this type of therapy may be introduced into routine practice. If the reminder e-mails prove to be helpful, new offers for patients may also develop from this.}, language = {en} } @phdthesis{Zapf2019, author = {Zapf, Michael}, title = {Oxidische Perovskite mit Hoher Massenzahl Z: D{\"u}nnfilmdeposition und Spektroskopische Untersuchungen}, doi = {10.25972/OPUS-18537}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185370}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Perovskite oxides are a very versatile material class with a large variety of outstanding physical properties. A subgroup of these compounds particularly tempting to investigate are oxides involving high-\(Z\) elements, where spin-orbit coupling is expected to give rise to new intriguing phases and potential application-relevant functionalities. This thesis deals with the preparation and characterization of two representatives of high-\(Z\) oxide sample systems based on KTaO\(_3\) and BaBiO\(_3\). KTaO\(_3\) is a band insulator with an electronic valence configuration of Ta 5\(d\)\(^0\) . It is shown that by pulsed laser deposition of a disordered LaAlO\(_3\) film on the KTaO\(_3\)(001) surface, through the creation of oxygen vacancies, a Ta 5\(d\)\(^{0+\(\delta\)}\) state is obtained in the upmost crystal layers of the substrate. In consequence a quasi two dimensional electron system (q2DES) with large spin-orbit coupling emerges at the heterointerface. Measurements of the Hall effect establish sheet carrier densities in the range of 0.1-1.2 10\(^{14}\) cm\(^2\), which can be controlled by the applied oxygen background pressure during deposition and the LaAlO\(_3\) film thickness. When compared to the prototypical oxide q2DESs based on SrTiO\(_3\) crystals, the investigated system exhibits exceptionally large carrier mobilities of up to 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) at room temperature (below 10 K). Through a depth profiling by photoemission spectra of the Ta 4\(f\) core level it is shown that the majority of the Ta 5\(d\)\(^0\) charge carriers, consisting of mobile and localized electrons, is situated within 4 nm from the interface at low temperatures. Furthermore, the momentum-resolved electronic structure of the q2DES \(buried\) underneath the LaAlO\(_3\) film is probed by means of hard X-ray angle-resolved photoelectron spectroscopy. It is inferred that, due to a strong confinement potential of the electrons, the band structure of the system is altered compared to \(n\)-doped bulk KTO. Despite the constraint of the electron movement along one direction, the Fermi surface exhibits a clear three dimensional momentum dependence, which is related to a depth extension of the conduction channels of at least 1 nm. The second material, BaBiO\(_3\), is a charge-ordered insulator, which has recently been predicted to emerge as a large-gap topological insulator upon \(n\)-doping. This study reports on the thin film growth of pristine BaBiO\(_3\) on Nb:SrTiO\(_3\)(001) substrates by means of pulsed laser deposition. The mechanism is identified that facilitates the development of epitaxial order in the heterostructure despite the presence of an extraordinary large lattice mismatch of 12 \%. At the heterointerface, a structurally modified layer of about 1.7 nm thickness is formed that gradually relieves the in-plane strain and serves as the foundation of a relaxed BBO film. The thereupon formed lattice orders laterally in registry with the substrate with the orientation BaBiO\(_3\)(001)||SrTiO\(_3\)(001) by so-called domain matching, where 8 to 9 BaBiO\(_3\) unit cells align with 9 to 10 unit cells of the substrate. Through the optimization of the deposition conditions in regard to the cation stoichiometry and the structural lattice quality, BaBiO\(_3\) thin films with bulk-like electronic properties are obtained, as is inferred from a comparison of valence band spectra with density functional theory calculations. Finally, a spectroscopic survey of BaBiO\(_3\) samples of various thicknesses resolves that a recently discovered film thickness-controlled phase transition in BaBiO\(_3\) thin films can be traced back to the structural and concurrent stoichiometric modifications occuring in the initially formed lattice on top of the SrTiO\(_3\) substrate rather than being purely driven by the smaller spatial extent of the BBO lattice.}, subject = {Perowskit}, language = {en} } @phdthesis{Yu2019, author = {Yu, Sung-Huan}, title = {Development and application of computational tools for RNA-Seq based transcriptome annotations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In order to understand the regulation of gene expression in organisms, precise genome annotation is essential. In recent years, RNA-Seq has become a potent method for generating and improving genome annotations. However, this Approach is time consuming and often inconsistently performed when done manually. In particular, the discovery of non-coding RNAs benefits strongly from the application of RNA-Seq data but requires significant amounts of expert knowledge and is labor-intensive. As a part of my doctoral study, I developed a modular tool called ANNOgesic that can detect numerous transcribed genomic features, including non-coding RNAs, based on RNA-Seq data in a precise and automatic fashion with a focus on bacterial and achaeal species. The software performs numerous analyses and generates several visualizations. It can generate annotations of high-Resolution that are hard to produce using traditional annotation tools that are based only on genome sequences. ANNOgesic can detect numerous novel genomic Features like UTR-derived small non-coding RNAs for which no other tool has been developed before. ANNOgesic is available under an open source license (ISCL) at https://github.com/Sung-Huan/ANNOgesic. My doctoral work not only includes the development of ANNOgesic but also its application to annotate the transcriptome of Staphylococcus aureus HG003 - a strain which has been a insightful model in infection biology. Despite its potential as a model, a complete genome sequence and annotations have been lacking for HG003. In order to fill this gap, the annotations of this strain, including sRNAs and their functions, were generated using ANNOgesic by analyzing differential RNA-Seq data from 14 different samples (two media conditions with seven time points), as well as RNA-Seq data generated after transcript fragmentation. ANNOgesic was also applied to annotate several bacterial and archaeal genomes, and as part of this its high performance was demonstrated. In summary, ANNOgesic is a powerful computational tool for RNA-Seq based annotations and has been successfully applied to several species.}, subject = {Genom}, language = {en} } @article{YoussifHaggagElshamyetal.2019, author = {Youssif, Khayrya A. and Haggag, Eman G. and Elshamy, Ali M. and Rabeh, Mohamed A. and Gabr, Nagwan M. and Seleem, Amany and Salem, M. Alaraby and Hussein, Ahmed S. and Krischke, Markus and Mueller, Martin J. and Ramadan Abdelmohsen, Usama}, title = {Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0223781}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202696}, pages = {e0223781}, year = {2019}, abstract = {The green synthesis of silver nanoparticles (SNPs) using plant extracts is an eco-friendly method. It is a single step and offers several advantages such as time reducing, cost-effective and environmental non-toxic. Silver nanoparticles are a type of Noble metal nanoparticles and it has tremendous applications in the field of diagnostics, therapeutics, antimicrobial activity, anticancer and neurodegenerative diseases. In the present work, the aqueous extracts of aerial parts of Lampranthus coccineus and Malephora lutea F. Aizoaceae were successfully used for the synthesis of silver nanoparticles. The formation of silver nanoparticles was early detected by a color change from pale yellow to reddish-brown color and was further confirmed by transmission electron microscope (TEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and energy-dispersive X-ray diffraction (EDX). The TEM analysis of showed spherical nanoparticles with a mean size between 12.86 nm and 28.19 nm and the UV- visible spectroscopy showed λ\(_{max}\) of 417 nm, which confirms the presence of nanoparticles. The neuroprotective potential of SNPs was evaluated by assessing the antioxidant and cholinesterase inhibitory activity. Metabolomic profiling was performed on methanolic extracts of L. coccineus and M. lutea and resulted in the identification of 12 compounds, then docking was performed to investigate the possible interaction between the identified compounds and human acetylcholinesterase, butyrylcholinesterase, and glutathione transferase receptor, which are associated with the progress of Alzheimer's disease. Overall our SNPs highlighted its promising potential in terms of anticholinesterase and antioxidant activity as plant-based anti-Alzheimer drug and against oxidative stress.}, language = {en} } @article{YangRajeeveRudeletal.2019, author = {Yang, Manli and Rajeeve, Karthika and Rudel, Thomas and Dandekar, Thomas}, title = {Comprehensive Flux Modeling of Chlamydia trachomatis Proteome and qRT-PCR Data Indicate Biphasic Metabolic Differences Between Elementary Bodies and Reticulate Bodies During Infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {2350}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.02350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189434}, year = {2019}, abstract = {Metabolic adaptation to the host cell is important for obligate intracellular pathogens such as Chlamydia trachomatis (Ct). Here we infer the flux differences for Ct from proteome and qRT-PCR data by comprehensive pathway modeling. We compare the comparatively inert infectious elementary body (EB) and the active replicative reticulate body (RB) systematically using a genome-scale metabolic model with 321 metabolites and 277 reactions. This did yield 84 extreme pathways based on a published proteomics dataset at three different time points of infection. Validation of predictions was done by quantitative RT-PCR of enzyme mRNA expression at three time points. Ct's major active pathways are glycolysis, gluconeogenesis, glycerol-phospholipid (GPL) biosynthesis (support from host acetyl-CoA) and pentose phosphate pathway (PPP), while its incomplete TCA and fatty acid biosynthesis are less active. The modeled metabolic pathways are much more active in RB than in EB. Our in silico model suggests that EB and RB utilize folate to generate NAD(P)H using independent pathways. The only low metabolic flux inferred for EB involves mainly carbohydrate metabolism. RB utilizes energy -rich compounds to generate ATP in nucleic acid metabolism. Validation data for the modeling include proteomics experiments (model basis) as well as qRT-PCR confirmation of selected metabolic enzyme mRNA expression differences. The metabolic modeling is made fully available here. Its detailed insights and models on Ct metabolic adaptations during infection are a useful modeling basis for future studies.}, language = {en} } @article{WoersdoerferDaldaKernetal.2019, author = {W{\"o}rsd{\"o}rfer, Philipp and Dalda, Nahide and Kern, Anna and Kr{\"u}ger, Sarah and Wagner, Nicole and Kwok, Chee Keong and Henke, Erik and Erg{\"u}n, S{\"u}leyman}, title = {Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-52204-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202681}, pages = {15663}, year = {2019}, abstract = {Organoids derived from human pluripotent stem cells are interesting models to study mechanisms of morphogenesis and promising platforms for disease modeling and drug screening. However, they mostly remain incomplete as they lack stroma, tissue resident immune cells and in particular vasculature, which create important niches during development and disease. We propose, that the directed incorporation of mesodermal progenitor cells (MPCs) into organoids will overcome the aforementioned limitations. In order to demonstrate the feasibility of the method, we generated complex human tumor as well as neural organoids. We show that the formed blood vessels display a hierarchic organization and mural cells are assembled into the vessel wall. Moreover, we demonstrate a typical blood vessel ultrastructure including endothelial cell-cell junctions, a basement membrane as well as luminal caveolae and microvesicles. We observe a high plasticity in the endothelial network, which expands, while the organoids grow and is responsive to anti-angiogenic compounds and pro-angiogenic conditions such as hypoxia. We show that vessels within tumor organoids connect to host vessels following transplantation. Remarkably, MPCs also deliver Iba1\(^+\) cells that infiltrate the neural tissue in a microglia-like manner.}, language = {en} } @article{WutzlerKrogiasGrauetal.2019, author = {Wutzler, Alexander and Krogias, Christos and Grau, Anna and Veltkamp, Roland and Heuschmann, Peter U. and Haeusler, Karl Georg}, title = {Stroke prevention in patients with acute ischemic stroke and atrial fibrillation in Germany - a cross sectional survey}, series = {BMC Neurology}, volume = {19}, journal = {BMC Neurology}, doi = {10.1186/s12883-019-1249-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201078}, pages = {25}, year = {2019}, abstract = {Background Atrial fibrillation (AF) is present in 15-20\% of patients with acute ischemic stroke. Oral anticoagulation reduces the risk of AF-related recurrent stroke but clinical guideline recommendations are rather vague regarding its use in the acute phase of stroke. We aimed to assess the current clinical practice of medical stroke prevention in AF patients during the acute phase of ischemic stroke. Methods In April 2017, a standardized anonymous questionnaire was sent to clinical leads of all 298 certified stroke units in Germany. Results Overall, 154 stroke unit leads participated (response rate 52\%). Anticoagulation in the acute phase of stroke is considered feasible in more than 90\% of AF patients with ischemic stroke. Clinicians assume that about two thirds of all AF patients (range 20-100\%) are discharged on oral anticoagulation. According to local preferences, acetylsalicylic acid is given orally in the majority of patients with delayed initiation of oral anticoagulation. A non-vitamin K-dependent oral anticoagulant (NOAC) is more often prescribed than a vitamin K-dependent oral anticoagulant (VKA). VKA is more often chosen in patients with previous VKA intake than in VKA naive patients. In the minority of patients, stroke unit leads discuss the prescription of a specific oral anticoagulant with the treating general practitioner. Adherence to medical stroke prevention after hospital discharge is not assessed on a regular basis in any patient by the majority of participating stroke centers. Conclusions Early secondary stroke prevention in AF patients in German stroke units is based on OAC use but prescription modalities vary in clinical practice.}, language = {en} } @article{WuReimannSiddiquietal.2019, author = {Wu, Hao and Reimann, Sabine and Siddiqui, Sophiya and Haag, Rainer and Siegmund, Britta and Dernedde, Jens and Glauben, Rainer}, title = {dPGS Regulates the Phenotype of Macrophages via Metabolic Switching}, series = {Macromolecular Bioscience}, volume = {19}, journal = {Macromolecular Bioscience}, number = {12}, doi = {10.1002/mabi.201900184}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212711}, year = {2019}, abstract = {The synthetic compound dendritic polyglycerol sulfate (dPGS) is a pleiotropic acting molecule but shows a high binding affinity to immunological active molecules as L-/P-selectin or complement proteins leading to well described anti-inflammatory properties in various mouse models. In order to make a comprehensive evaluation of the direct effect on the innate immune system, macrophage polarization is analyzed in the presence of dPGS on a phenotypic but also metabolic level. dPGS administered macrophages show a significant increase of MCP1 production paralleled by a reduction of IL-10 secretion. Metabolic analysis reveals that dPGS could potently enhance the glycolysis and mitochondrial respiration in M0 macrophages as well as decrease the mitochondrial respiration of M2 macrophages. In summary the data indicate that dPGS polarizes macrophages into a pro-inflammatory phenotype in a metabolic pathway-dependent manner.}, language = {en} } @phdthesis{Wu2019, author = {Wu, Fang}, title = {Adding new functions to insulin-like growth factor-I (IGF-I) via genetic codon expansion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175330}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Insulin-like growth factor-I (IGF-I) is a 70-amino acid polypeptide with a molecular weight of approximately 7.6 kDa acting as an anabolic effector. It is essential for tissue growth and remodeling. Clinically, it is used for the treatment of growth disorders and has been proposed for various other applications including musculoskeletal diseases. Unlike insulin, IGF-I is complexed to at least six high-affinity binding proteins (IGFBPs) exerting homeostatic effects by modulating IGF-I availability to its receptor (IGF-IR) on most cells in the body as well as changing the distribution of the growth factor within the organism.1-3 Short half-lived IGF-I have been the driving forces for the design of localized IGF-I depot systems or protein modification with enhanced pharmacokinetic properties. In this thesis, we endeavor to present a versatile biologic into which galenical properties were engineered through chemical synthesis, e.g., by site-specific coupling of biomaterials or complex composites to IGF-I. For that, we redesigned the therapeutic via genetic codon expansion resulting in an alkyne introduced IGF-I, thereby becoming a substrate for biorthogonal click chemistries yielding a site-specific decoration. In this approach, an orthogonal pyrrolysine tRNA synthetase (PylRS)/tRNAPyl CUA pair was employed to direct the co-translational incorporation of an unnatural amino acid—¬propargyl-L-lysine (plk)—bearing a clickable alkyne functional handle into IGF-I in response to the amber stop codon (UAG) introduced into the defined position in the gene of interest. We summarized the systematic optimization of upstream and downstream process alike with the ultimate goal to increase the yield of plk modified IGF-I therapeutic, from the construction of gene fusions resulting in (i) Trx-plk-IGF-I fusion variants, (ii) naturally occurring pro-IGF-I protein (IGF-I + Ea peptide) (plk-IGF-I Ea), over the subsequent bacterial cultivation and protein extraction to the final chromatographic purification. The opportunities and hurdles of all of the above strategies were discussed. Evidence was provided that the wild-type IGF-I yields were pure by exploiting the advantages of the pHisTrx expression vector system in concert with a thrombin enzyme with its highly specific proteolytic digestion site and multiple-chromatography steps. The alkyne functionality was successfully introduced into IGF-I by amber codon suppression. The proper folding of plk-IGF-I Ea was assessed by WST-1 proliferation assay and the detection of phosphorylated AKT in MG-63 cell lysate. The purity of plk-IGF-I Ea was monitored with RP-HPLC and SDS-PAGE analysis. This work also showed site-specific coupling an alkyne in plk-IGF-I Ea by copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) with potent activities in vitro. The site-specific immobilization of plk-IGF-I Ea to the model carrier (i.e., agarose beads) resulted in enhanced cell proliferation and adhesion surrounding the IGF-I-presenting particles. Cell proliferation and differentiation were enhanced in the accessibility of IGF-I decorated beads, reflecting the multivalence on cellular performance. Next, we aimed at effectively showing the disease environment by co-delivery of fibroblast growth factor 2 (FGF2) and IGF-I, deploying localized matrix metalloproteinases (MMPs) upregulation as a surrogate marker driving the response of the drug delivery system. For this purpose, we genetically engineered FGF2 variant containing an (S)-2-amino-6-(((2-azidoethoxy)carbonyl)amino)hexanoic acid incorporated at its N-terminus, followed by an MMPs-cleavable linker (PCL) and FGF2 sequence, thereby allowing site-directed, specific decoration of the resultant azide-PCL-FGF2 with the previously mentioned plk-IGF-I Ea to generate defined protein-protein conjugates with a PCL in between. The click reaction between plk-IGF-I Ea and azide-PCL-FGF2 was systematically optimized to increase the yield of IGF-FGF conjugates, including reaction temperature, incubation duration, the addition of anionic detergent, and different ratios of the participating biopharmaceutics. The challenge here was that CuAAC reaction components or conditions might oxidize free cysteines of azide-PCL-FGF2 and future work needs to present the extent of activity retention after conjugation. Furthermore, our study provides potential options for dual-labeling of IGF-I either by the introduction of unnatural amino acids within two distinct positions of the protein of interest for parallel "double-click" labeling of the resultant plk-IGF-I Ea-plk or by using a combination of enzymatic-catalyzed and CuAAC bioorthogonal coupling strategies for sequentially dual-labeling of plk-IGF-I Ea. In conclusion, genetic code expansion in combination with click-chemistry provides the fundament for novel IGF-I analogs allowing unprecedented site specificity for decoration. Considerable progress towards IGF-I based therapies with enhanced pharmacological properties was made by demonstrating the feasibility of the expression of plk incorporated IGF-I using E. coli and retained activity of unconjugated and conjugated IGF-I variant. Dual-labeling of IGF-I provides further insights into the functional requirements of IGF-I. Still, further investigation warrants to develop precise IGF-I therapy through unmatched temporal and spatial regulation of the pleiotropic IGF-I.}, subject = {Insulin-like Growth Factor I}, language = {en} } @article{WobserWeberGlunzetal.2019, author = {Wobser, Marion and Weber, Alexandra and Glunz, Amelie and Tauch, Saskia and Seitz, Kristina and Butelmann, Tobias and Hesbacher, Sonja and Goebeler, Matthias and Bartz, Ren{\´e} and Kohlhof, Hella and Schrama, David and Houben, Roland}, title = {Elucidating the mechanism of action of domatinostat (4SC-202) in cutaneous T cell lymphoma cells}, series = {Journal of Hematology \& Oncology}, volume = {12}, journal = {Journal of Hematology \& Oncology}, doi = {10.1186/s13045-019-0719-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200703}, pages = {30}, year = {2019}, abstract = {Background Targeting epigenetic modifiers is effective in cutaneous T cell lymphoma (CTCL). However, there is a need for further improvement of this therapeutic approach. Here, we compared the mode of action of romidepsin (FK228), an established class I histone deacetylase inhibitor, and domatinostat (4SC-202), a novel inhibitor of class I HDACs, which has been reported to also target the lysine-specific histone demethylase 1A (LSD1). Methods We performed MTS assays and flow cytometric analyses of propidium iodide or annexin V-stained cells to assess drug impact on cellular proliferation, cell cycle distribution, and survival. Histone acetylation and methylation as well as caspase activation was analyzed by immunoblot. Gene expression analysis was performed using NanosString technology. Knockdown and knockout of LSD1 was achieved with shRNA and CRISPR/Cas9, respectively, while the CRISPR/Cas9 synergistic activation mediator system was used to induce expression of endogenous HDACs and LSD1. Furthermore, time-lapse fluorescence microscopy and an in vitro tubulin polymerization assay were applied. Results While FK228 as well as 4SC-202 potently induced cell death in six different CTCL cell lines, only in the case of 4SC-202 death was preceded by an accumulation of cells in the G2/M phase of the cell cycle. Surprisingly, apoptosis and accumulation of cells with double DNA content occurred already at 4SC-202 concentrations hardly affecting histone acetylation and methylation, and provoking significantly less changes in gene expression compared to biologically equivalent doses of FK228. Indeed, we provide evidence that the 4SC-202-induced G2/M arrest in CTCL cells is independent of de novo transcription. Furthermore, neither enforced expression of HDAC1 nor knockdown or knockout of LSD1 affected the 4SC-202-induced effects. Since time-lapse microscopy revealed that 4SC-202 could affect mitotic spindle formation, we performed an in vitro tubulin polymerization assay revealing that 4SC-202 can directly inhibit microtubule formation. Conclusions We demonstrate that 4SC-202, a drug currently tested in clinical trials, effectively inhibits growth of CTCL cells. The anti-cancer cell activity of 4SC-202 is however not limited to LSD1-inhibition, modulation of histone modifications, and consecutive alteration of gene expression. Indeed, the compound is also a potent microtubule-destabilizing agent.}, language = {en} } @phdthesis{Wistlich2019, author = {Wistlich, Laura}, title = {NCO-sP(EO-stat-PO) as functional additive for biomaterials' development}, doi = {10.25972/OPUS-17836}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178365}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The aim of this thesis was the application of the functional prepolymer NCO-sP(EO-stat-PO) for the development of new biomaterials. First, the influence of the star-shaped polymers on the mechanical properties of biocements and bone adhesives was investigated. 3-armed star-shaped macromers were used as an additive for a mineral bone cement, and the influence on the mechanical properties was studied. Additionally, a previously developed bone adhesive was examined regarding cytocompatibility. The second topic was the examination of novel functionalization steps which were performed on the surface of electrospun fibers modified with NCO-sP(EO-stat-PO). This established method of functionalizing electrospun meshes was advanced regarding the modification with proteins which was then demonstrated in a biological application. Two different kinds of antibodies were immobilized on the fiber surface in a consecutive manner and the influence of these proteins on the cell behavior was investigated. The final topic involved the quantification of surface-bound peptide sequences. By functionalization of the peptides with the UV-reactive molecule 2-mercaptopyridine it was possible to quantify this compound via UV measurements by cleavage of disulfide bridges and indirectly draw conclusions about the number of immobilized peptides. In the field of mineral biocements and bone adhesives, NCO-sP(EO-stat-PO) was able to influence the setting behavior and mechanical performance of mineral bone cements based on calcium phosphate chemistry. The addition of NCO-sP(EO-stat-PO) resulted in a pseudo-ductile fracture behavior due to the formation of a hydrogel network in the cement, which was then mineralized by nanosized hydroxyapatite crystals following cement setting. Accordingly, a commercially available aluminum silicate cement from civil engineering could be modified. In addition, it could be shown that the use of NCO-sP(EO-stat-PO) is beneficial for adjusting specific material properties of bone adhesives. Here, the crosslinking behavior of the prepolymer in an aqueous medium was exploited to form an interpenetrating network (IPN) together with a photochemically curing poly(ethylene glycol) dimethacrylate (PEGDMA) matrix. This could be used for the development of a bone adhesive with an improved adhesion to bone in a wet environment. The developed bone adhesive was further investigated in terms of possible influences of the initiator systems. In addition, the material system was tested for cytocompatibility by using different cell lines. Moreover, the preparation of electrospun fiber meshes via solution electrospinning consisting of poly(lactide-co-glycolide) (PLGA) as a backbone polymer and NCO-sP(EO-stat-PO) as functional additive is an established method for the application of the meshes as a replacement of the native extracellular matrix (ECM). In general, these fibers reveal diameters in the nanometer range, are protein and cell repellent due to the hydrophilic properties of the prepolymer and show a specific biofunctionalization by immobilization of peptide sequences. Here, the isocyanate groups presented on the fiber surface after electrospinning were used to carry out various functionalization steps, while retaining the properties of protein and cell repellency. The modification of the electrospun fibers involved the immobilization of analogs or antagonists of tumor necrosis factor (TNF) and the indirect detection of these by interaction with a light-producing enzyme. Here, a multimodal modification of the fiber surface with RGD to mediate cell adhesion and two different antibodies could be achieved. After culturing the cell line HT1080, the pro- or anti-inflammatory response of cells could be detected by IL-8 specific ELISA measurements. Furthermore, the quantification of molecules on the surface of electrospun fibers was investigated. It was tested whether the detection by means of super-resolution microscopy would be possible. Therefore, experiments were performed with short amino acid sequences such as RGD for quantification by fluorescence microscopy. Based on earlier results, in which a UV-spectrometrically active molecule was used to detect the quantification of RGD, it was shown that short peptides can also be quantified in a small scale on flat functional substrates (2D) such as NCO-sP(EO-stat-PO) hydrogel coatings, and modified electrospun fibers produced from PLGA and NCO-sP(EO-stat-PO) (3D). In addition, a collagen sequence was used to prove that a successful quantification can be carried out as well for longer peptide chains. These studies have revealed that NCO-sP(EO-stat-PO) can serve as a functional additive for many applications and should be considered for further studies on the development of novel biomaterials. The rapid crosslinking reaction, the resulting hydrogel formation and the biocompatibility are to be mentioned as positive properties, which makes the prepolymer interesting for future applications.}, subject = {Sternpolymere}, language = {en} } @article{WintzheimerOppmannDoldetal.2019, author = {Wintzheimer, Susanne and Oppmann, Maximilian and Dold, Martin and Pannek, Carolin and Bauersfeld, Marie-Luise and Henfling, Michael and Trupp, Sabine and Schug, Benedikt and Mandel, Karl}, title = {Indicator Supraparticles for Smart Gasochromic Sensor Surfaces Reacting Ultrafast and Highly Sensitive}, series = {Particle \& Particle Systems Characterization}, volume = {36}, journal = {Particle \& Particle Systems Characterization}, number = {10}, doi = {10.1002/ppsc.201900254}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213671}, year = {2019}, abstract = {The detection of toxic gases, such as NH\(_{3}\) and CO, in the environment is of high interest in chemical, electronic, and automotive industry as even small amounts can display a health risk for workers. Sensors for the real-time monitoring of these gases should be simple, robust, reversible, highly sensitive, inexpensive and show a fast response. The indicator supraparticles presented herein can fulfill all of these requirements. They consist of silica nanoparticles, which are assembled to supraparticles upon spray-drying. Sensing molecules such as Reichardt's dye and a binuclear rhodium complex are loaded onto the microparticles to target NH\(_{3}\) and CO detection, respectively. The spray-drying technique affords high flexibility in primary nanoparticle size selection and thus, easy adjustment of the porosity and specific surface area of the obtained micrometer-sized supraparticles. This ultimately enables the fine-tuning of the sensor sensitivity and response. For the application of the indicator supraparticles in a gas detection device, they can be immobilized on a coating. Due to their microscale size, they are large enough to poke out of thin coating layers, thus guaranteeing their gas accessibility, while being small enough to be applicable to flexible substrates.}, language = {en} } @article{WinterAndelovicKampfetal.2019, author = {Winter, Patrick and Andelovic, Kristina and Kampf, Thomas and Gutjahr, Fabian Tobias and Heidenreich, Julius and Zernecke, Alma and Bauer, Wolfgang Rudolf and Jakob, Peter Michael and Herold, Volker}, title = {Fast self-navigated wall shear stress measurements in the murine aortic archusing radial 4D-phase contrast cardiovascular magnetic resonance at 17.6 T}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {21}, journal = {Journal of Cardiovascular Magnetic Resonance}, doi = {10.1186/s12968-019-0566-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201120}, pages = {64}, year = {2019}, abstract = {Purpose 4D flow cardiovascular magnetic resonance (CMR) and the assessment of wall shear stress (WSS) are non-invasive tools to study cardiovascular risks in vivo. Major limitations of conventional triggered methods are the long measurement times needed for high-resolution data sets and the necessity of stable electrocardiographic (ECG) triggering. In this work an ECG-free retrospectively synchronized method is presented that enables accelerated high-resolution measurements of 4D flow and WSS in the aortic arch of mice. Methods 4D flow and WSS were measured in the aortic arch of 12-week-old wildtype C57BL/6 J mice (n = 7) with a radial 4D-phase-contrast (PC)-CMR sequence, which was validated in a flow phantom. Cardiac and respiratory motion signals were extracted from the radial CMR signal and were used for the reconstruction of 4D-flow data. Rigid motion correction and a first order B0 correction was used to improve the robustness of magnitude and velocity data. The aortic lumen was segmented semi-automatically. Temporally averaged and time-resolved WSS and oscillatory shear index (OSI) were calculated from the spatial velocity gradients at the lumen surface at 14 locations along the aortic arch. Reproducibility was tested in 3 animals and the influence of subsampling was investigated. Results Volume flow, cross-sectional areas, WSS and the OSI were determined in a measurement time of only 32 min. Longitudinal and circumferential WSS and radial stress were assessed at 14 analysis planes along the aortic arch. The average longitudinal, circumferential and radial stress values were 1.52 ± 0.29 N/m2, 0.28 ± 0.24 N/m2 and - 0.21 ± 0.19 N/m2, respectively. Good reproducibility of WSS values was observed. Conclusion This work presents a robust measurement of 4D flow and WSS in mice without the need of ECG trigger signals. The retrospective approach provides fast flow quantification within 35 min and a flexible reconstruction framework.}, language = {en} } @phdthesis{Wiesbeck2019, author = {Wiesbeck, Christina}, title = {Fabrication and characterization of NCO-sP(EO-stat-PO)- crosslinked and functionalized electrospun gelatin scaffolds for tissue engineering applications}, doi = {10.25972/OPUS-19098}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190988}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In Tissue Engineering, scaffolds composed of natural polymers often show a distinct lack in stability. The natural polymer gelatin is highly fragile under physiological conditions, nevertheless displaying a broad variety of favorable properties. The aim of this study was to fabricate electrospun gelatin nanofibers, in situ functionalized and stabilized during the spinning process with highly reactive star polymer NCO-sP(EO-stat-PO) ("sPEG"). A spinning protocol for homogenous, non-beaded, 500 to 1000 nm thick nanofibers from different ratios of gelatin and sPEG was successfully established. Fibers were subsequently characterized and tested with SEM imaging, tensile tests, water incubation, FTIR, EDX, and cell culture. It was shown that adding sPEG during the spinning process leads to an increase in visible fiber crosslinking, mechanical stability, and stability in water. The nanofibers were further shown to be biocompatible in cell culture with RAW 264.7 macrophages.}, subject = {Tissue Engineering}, language = {en} } @article{WiechmannRoehSaueretal.2019, author = {Wiechmann, Tobias and R{\"o}h, Simone and Sauer, Susann and Czamara, Darina and Arloth, Janine and K{\"o}del, Maik and Beintner, Madita and Knop, Lisanne and Menke, Andreas and Binder, Elisabeth B. and Proven{\c{c}}al, Nadine}, title = {Identification of dynamic glucocorticoid-induced methylation changes at the FKBP5 locus}, series = {Clinical Epigenetics}, volume = {11}, journal = {Clinical Epigenetics}, doi = {10.1186/s13148-019-0682-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233673}, year = {2019}, abstract = {Background Epigenetic mechanisms may play a major role in the biological embedding of early-life stress (ELS). One proposed mechanism is that glucocorticoid (GC) release following ELS exposure induces long-lasting alterations in DNA methylation (DNAm) of important regulatory genes of the stress response. Here, we investigate the dynamics of GC-dependent methylation changes in key regulatory regions of the FKBP5 locus in which ELS-associated DNAm changes have been reported. Results We repeatedly measured DNAm in human peripheral blood samples from 2 independent cohorts exposed to the GC agonist dexamethasone (DEX) using a targeted bisulfite sequencing approach, complemented by data from Illumina 450K arrays. We detected differentially methylated CpGs in enhancers co-localizing with GC receptor binding sites after acute DEX treatment (1 h, 3 h, 6 h), which returned to baseline levels within 23 h. These changes withstood correction for immune cell count differences. While we observed main effects of sex, age, body mass index, smoking, and depression symptoms on FKBP5 methylation levels, only the functional FKBP5 SNP (rs1360780) moderated the dynamic changes following DEX. This genotype effect was observed in both cohorts and included sites previously shown to be associated with ELS. Conclusion Our study highlights that DNAm levels within regulatory regions of the FKBP5 locus show dynamic changes following a GC challenge and suggest that factors influencing the dynamics of this regulation may contribute to the previously reported alterations in DNAm associated with current and past ELS exposure.}, language = {en} } @article{WickHarteltPuppe2019, author = {Wick, Christoph and Hartelt, Alexander and Puppe, Frank}, title = {Staff, symbol and melody detection of Medieval manuscripts written in square notation using deep Fully Convolutional Networks}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {13}, issn = {2076-3417}, doi = {10.3390/app9132646}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197248}, year = {2019}, abstract = {Even today, the automatic digitisation of scanned documents in general, but especially the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous challenge, since both handwritten musical symbols and text have to be identified. This paper focuses on the Medieval so-called square notation developed in the 11th-12th century, which is already composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard OMR approach and comprises a novel staff line and symbol detection algorithm based on deep Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines or symbols and their respective types. Then, the staff line detection combines the extracted lines to staves and yields an F\(_1\) -score of over 99\% for both detecting lines and complete staves. For the music symbol detection, we choose a novel approach that skips the step to identify neumes and instead directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a diplomatic symbol accuracy rate (dSAR) of about 87\%, which includes symbol type and location. If only the NCs without their respective connection to a neume, all clefs and accidentals are of interest, the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90\%. In general, the algorithm recognises a symbol in the manuscript with an F\(_1\) -score of over 96\%.}, language = {en} } @article{WestermannVenturiniSellinetal.2019, author = {Westermann, Alexander J. and Venturini, Elisa and Sellin, Mikael E. and F{\"o}rstner, Konrad U. and Hardt, Wolf-Dietrich and Vogel, J{\"o}rg}, title = {The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium}, series = {mBio}, volume = {10}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02504-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177722}, pages = {e02504-18}, year = {2019}, abstract = {FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs. IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.}, language = {en} } @article{WernerWakabayashiChenetal.2019, author = {Werner, Rudolf A. and Wakabayashi, Hiroshi and Chen, Xinyu and Hayakawa, Nobuyuki and Lapa, Constantin and Rowe, Steven P. and Javadi, Mehrbod S. and Robinson, Simon and Higuchi, Takahiro}, title = {Ventricular distribution pattern of the novel sympathetic nerve PET radiotracer \(^{18}\)F-LMI1195 in Rabbit Hearts}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-53596-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202707}, pages = {17026}, year = {2019}, abstract = {We aimed to determine a detailed regional ventricular distribution pattern of the novel cardiac nerve PET radiotracer \(^{18}\)F-LMI1195 in healthy rabbits. Ex-vivo high resolution autoradiographic imaging was conducted to identify accurate ventricular distribution of \(^{18}\)F-LMI1195. In healthy rabbits, \(^{18}\)F-LMI1195 was administered followed by the reference perfusion marker \(^{201}\)Tl for a dual-radiotracer analysis. After 20 min of \(^{18}\)F-LMI1195 distribution time, the rabbits were euthanized, the hearts were extracted, frozen, and cut into 20-μm short axis slices. Subsequently, the short axis sections were exposed to a phosphor imaging plate to determine \(^{18}\)F-LMI1195 distribution (exposure for 3 h). After complete \(^{18}\)F decay, sections were re-exposed to determine 201Tl distribution (exposure for 7 days). For quantitative analysis, segmental regions of Interest (ROIs) were divided into four left ventricular (LV) and a right ventricular (RV) segment on mid-ventricular short axis sections. Subendocardial, mid-portion, and subepicardial ROIs were placed on the LV lateral wall. \(^{18}\)F-LMI1195 distribution was almost homogeneous throughout the LV wall without any significant differences in all four LV ROIs (anterior, posterior, septal and lateral wall, 99 ± 2, 94 ± 5, 94 ± 4 and 97 ± 3\%LV, respectively, n.s.). Subepicardial \(^{201}\)Tl uptake was significantly lower compared to the subendocardial portion (subendocardial, mid-portion, and subepicardial activity: 90 ± 3, 96 ± 2 and *80 ± 5\%LV, respectively, *p < 0.01 vs. mid-portion). This was in contradistinction to the transmural wall profile of \(^{18}\)F-LMI1195 (90 ± 4, 96 ± 5 and 84 ± 4\%LV, n.s.). A slight but significant discrepant transmural radiotracer distribution pattern of \(^{201}\)Tl in comparison to \(^{18}\)F-LMI1195 may be a reflection of physiological sympathetic innervation and perfusion in rabbit hearts.}, language = {en} } @article{WernerOrdonezSanchezBautistaetal.2019, author = {Werner, Rudolf A. and Ordonez, Alvaro A. and Sanchez-Bautista, Julian and Marcus, Charles and Lapa, Constantin and Rowe, Steven P. and Pomper, Martin G. and Leal, Jeffrey P. and Lodge, Martin A. and Javadi, Mehrbod S. and Jain, Sanjay K. and Higuchi, Takahiro}, title = {Novel functional renal PET imaging with 18F-FDS in human subjects}, series = {Clinical Nuclear Medicine}, volume = {44}, journal = {Clinical Nuclear Medicine}, number = {5}, issn = {0363-9762}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174634}, pages = {410-411}, year = {2019}, abstract = {The novel PET probe 2-deoxy-2-18F-fluoro-D-sorbitol (18F-FDS) has demonstrated favorable renal kinetics in animals. We aimed to elucidate its imaging properties in two human volunteers. 18F-FDS was produced by a simple one-step reduction from 18F-FDG. On dynamic renal PET, the cortex was delineated and activity gradually transited in the parenchyma, followed by radiotracer excretion. No adverse effects were reported. Given the higher spatiotemporal resolution of PET relative to conventional scintigraphy, 18F-FDS PET offers a more thorough evaluation of human renal kinetics. Due to its simple production from 18F-FDG, 18F-FDS is virtually available at any PET facility with radiochemistry infrastructure.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerKircherHiguchietal.2019, author = {Werner, Rudolf A. and Kircher, Stefan and Higuchi, Takahiro and Kircher, Malte and Schirbel, Andreas and Wester, Hans-J{\"u}rgen and Buck, Andreas K. and Pomper, Martin G. and Rowe, Steven P. and Lapa, Constantin}, title = {CXCR4-directed imaging in solid tumors}, series = {Frontiers in Oncology}, volume = {9}, journal = {Frontiers in Oncology}, number = {770}, issn = {2234-943X}, doi = {10.3389/fonc.2019.00770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195678}, year = {2019}, abstract = {Despite histological evidence in various solid tumor entities, available experience with CXCR4-directed diagnostics and endoradiotherapy mainly focuses on hematologic diseases. With the goal of expanding the application of CXCR4 theranostics to solid tumors, we aimed to elucidate the feasibility of CXCR4-targeted imaging in a variety of such neoplasms. Methods: Nineteen patients with newly diagnosed, treatment-na{\"i}ve solid tumors including pancreatic adenocarcinoma or neuroendocrine tumor, cholangiocarcinoma, hepatocellular carcinoma, renal cell carcinoma, ovarian cancer, and prostate cancer underwent [\(^{68}\)Ga]Pentixafor PET/CT. CXCR4-mediated uptake was assessed both visually and semi-quantitatively by evaluation of maximum standardized uptake values (SUV\(_{max}\)) of both primary tumors and metastases. With physiologic liver uptake as reference, tumor-to-background ratios (TBR) were calculated. [\(^{68}\)Ga]Pentixafor findings were further compared to immunohistochemistry and [\(^{18}\)F]FDG PET/CT. Results: On [\(^{68}\)Ga]Pentixafor PET/CT, 10/19 (52.6\%) primary tumors were visually detectable with a median SUVmax of 5.4 (range, 1.7-16.0) and a median TBR of 2.6 (range, 0.8-7.4), respectively. The highest level of radiotracer uptake was identified in a patient with cholangiocarcinoma (SUVmax, 16.0; TBR, 7.4). The relatively low uptake on [\(^{68}\)Ga]Pentixafor was also noted in metastases, exhibiting a median SUVmax of 4.5 (range, 2.3-8.8; TBR, 1.7; range, 1.0-4.1). A good correlation between uptake on [\(^{68}\)Ga]Pentixafor and histological derived CXCR4 expression was noted (R = 0.62, P < 0.05). In the 3 patients in whom [\(^{18}\)F]FDG PET/CT was available, [\(^{68}\)Ga]Pentixafor exhibited lower uptake in all lesions. Conclusions: In this cohort of newly diagnosed, treatment-na{\"i}ve patients with solid malignancies, CXCR4 expression as detected by [\(^{68}\)Ga]Pentixafor-PET/CT and immunohistochemistry was rather moderate. Thus, CXCR4-directed imaging may not play a major role in the management of solid tumors in the majority of patients.}, language = {en} } @unpublished{WernerBundschuhBundschuhetal.2019, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Fanti, Stefano and Javadi, Mehrbod S. and Higuchi, Takahiro and Weich, A. and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Herrmann, Ken and Lapa, Constantin and Rowe, Steven P.}, title = {Novel Structured Reporting Systems for Theranostic Radiotracers}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.118.223537}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174629}, year = {2019}, abstract = {Standardized reporting is more and more routinely implemented in clinical practice and such structured reports have a major impact on a large variety of medical fields, e.g. laboratory medicine, pathology, and, recently, radiology. Notably, the field of nuclear medicine is constantly evolving, as novel radiotracers for numerous clinical applications are developed. Thus, framework systems for standardized reporting in this field may a) increase clinical acceptance of new radiotracers, b) allow for inter- and intra-center comparisons for quality assurance, and c) may be used in (global) multi-center studies to ensure comparable results and enable efficient data abstraction. In the last two years, several standardized framework systems for positron emission tomography (PET) radiotracers with potential theranostic applications have been proposed. These include systems for prostate-specific membrane antigen (PSMA)-targeted PET agents for the diagnosis and treatment of prostate cancer (PCa) and somatostatin receptor (SSTR)-targeted PET agents for the diagnosis and treatment of neuroendocrine neoplasias. In the present review, those standardized framework systems for PSMA- and SSTR-targeted PET will be briefly introduced followed by an overview of their advantages and limitations. In addition, potential applications will be defined, approaches to validate such concepts will be proposed, and future perspectives will be discussed.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @phdthesis{Wermser2019, author = {Wermser, Charlotte}, title = {Morphology, regulation and interstrain interactions in a new macrocolony biofilm model of the human pathogen \(Staphylococcus\) \(aureus\)}, doi = {10.25972/OPUS-16593}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165931}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The role of multicellularity as the predominant microbial lifestyle has been affirmed by studies on the genetic regulation of biofilms and the conditions driving their formation. Biofilms are of prime importance for the pathology of chronic infections of the opportunistic human pathogen Staphylococcus aureus. The recent development of a macrocolony biofilm model in S. aureus opened new opportunities to study evolution and physiological specialization in biofilm communities in this organism. In the macrocolony biofilm model, bacteria form complex aggregates with a sophisticated spatial organization on the micro- and macroscale. The central positive and negative regulators of this organization in S. aureus are the alternative sigma factor σB and the quorum sensing system Agr, respectively. Nevertheless, nothing is known on additional factors controlling the macrocolony morphogenesis. In this work, the genome of S. aureus was screened for novel factors that are required for the development of the macrocolony architecture. A central role for basic metabolic pathways was demonstrated in this context as the macrocolony architecture was strongly altered by the disruption of nucleotide and carbohydrate synthesis. Environmental signals further modulate macrocolony morphogenesis as illustrated by the role of an oxygen-sensitive gene regulator, which is required for the formation of complex surface structures. A further application of the macrocolony biofilm model was demonstrated in the study of interstrain interactions. The integrity of macrocolony communities was macroscopically visibly disturbed by competitive interactions between clinical isolates of S. aureus. The results of this work contribute to the characterization of the macrocolony biofilm model and improve our understanding of developmental processes relevant in staphylococcal infections. The identification of anti-biofilm effects exercised through competitive interactions could lead to the design of novel antimicrobial strategies targeting multicellular bacterial communities.}, subject = {Staphylococcus aureus}, language = {en} } @article{WenNowakKrolNagleretal.2019, author = {Wen, Xinbo and Nowak-Kr{\´o}l, Agnieszka and Nagler, Oliver and Kraus, Felix and Zhu, Na and Zheng, Nan and M{\"u}ller, Matthias and Schmidt, David and Xie, Zengqi and W{\"u}rthner, Frank}, title = {Tetrahydroxy-perylene bisimide embedded in zinc oxide thin film as electron transporting layer for high performance non-fullerene organic solar cells}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {37}, doi = {10.1002/anie.201907467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204723}, pages = {13051-13055}, year = {2019}, abstract = {By introduction of four hydroxy (HO) groups into the two perylene bisimide (PBI) bay areas, new HO-PBI ligands were obtained which upon deprotonation can complex ZnII ions and photosensitize semiconductive zinc oxide thin films. Such coordination is beneficial for dispersing PBI photosensitizer molecules evenly into metal oxide films to fabricate organic-inorganic hybrid interlayers for organic solar cells. Supported by the photoconductive effect of the ZnO:HO-PBI hybrid interlayers, improved electron collection and transportation is achieved in fullerene and non-fullerene polymer solar cell devices, leading to remarkable power conversion efficiencies of up to 15.95 \% for a non-fullerene based organic solar cell.}, language = {en} } @phdthesis{Weller2019, author = {Weller, Lisa}, title = {How to not act? Cognitive foundations of intentional nonactions}, doi = {10.25972/OPUS-17667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176678}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Human actions are generally not determined by external stimuli, but by internal goals and by the urge to evoke desired effects in the environment. To reach these effects, humans typically have to act. But at times, deciding not to act can be better suited or even the only way to reach a desired effect. What mental processes are involved when people decide not to act to reach certain effects? From the outside it may seem that nothing remarkable is happening, because no action can be observed. However, I present three studies which disclose the cognitive processes that control nonactions. The present experiments address situations where people intentionally decide to omit certain actions in order to produce a predictable effect in the environment. These experiments are based on the ideomotor hypothesis, which suggests that bidirectional associations can be formed between actions and the resulting effects. Because of these associations, anticipating the effects can in turn activate the respective action. The results of the present experiments show that associations can be formed between nonactions (i.e., the intentional decision not to act) and the resulting effects. Due to these associations, perceiving the nonaction effects encourages not acting (Exp. 1-3). What is more, planning a nonaction seems to come with an activation of the effects that inevitably follow the nonaction (Exp. 4-5). These results suggest that the ideomotor hypothesis can be expanded to nonactions and that nonactions are cognitively represented in terms of their sensory effects. Furthermore, nonaction effects can elicit a sense of agency (Exp. 6-8). That is, even though people refrain from acting, the resulting nonaction effects are perceived as self-produced effects. In a nutshell, these findings demonstrate that intentional nonactions include specific mechanisms and processes, which are involved, for instance, in effect anticipation and the sense of agency. This means that, while it may seem that nothing remarkable is happening when people decide not to act, complex processes run on the inside, which are also involved in intentional actions.}, subject = {Intention}, language = {en} } @phdthesis{WeinstockgebPattschull2019, author = {Weinstock [geb. Pattschull], Grit}, title = {Crosstalk between the MMB complex and YAP in transcriptional regulation of cell cycle genes}, doi = {10.25972/OPUS-17086}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The Myb-MuvB (MMB) multiprotein complex is a master regulator of cell cycle-dependent gene expression. Target genes of MMB are expressed at elevated levels in several different cancer types and are included in the chromosomal instability (CIN) signature of lung, brain, and breast tumors. This doctoral thesis showed that the complete loss of the MMB core subunit LIN9 leads to strong proliferation defects and nuclear abnormalities in primary lung adenocarcinoma cells. Transcriptome profiling and genome-wide DNA-binding analyses of MMB in lung adenocarcinoma cells revealed that MMB drives the expression of genes linked to cell cycle progression, mitosis, and chromosome segregation by direct binding to promoters of these genes. Unexpectedly, a previously unknown overlap between MMB-dependent genes and several signatures of YAP-regulated genes was identified. YAP is a transcriptional co-activator acting downstream of the Hippo signaling pathway, which is deregulated in many tumor types. Here, MMB and YAP were found to physically interact and co-regulate a set of mitotic and cytokinetic target genes, which are important in cancer. Furthermore, the activation of mitotic genes and the induction of entry into mitosis by YAP were strongly dependent on MMB. By ChIP-seq and 4C-seq, the genome-wide binding of MMB upon YAP overexpression was analyzed and long-range chromatin interaction sites of selected MMB target gene promoters were identified. Strikingly, YAP strongly promoted chromatin-association of B-MYB through binding to distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. Together, the findings of this thesis provide a so far unknown molecular mechanism by which YAP and MMB cooperate to regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, subject = {Krebs }, language = {en} } @phdthesis{Weinhard2019, author = {Weinhard, Alexander}, title = {Managing RFID Implementations - Implications for Managerial Decision Making}, doi = {10.25972/OPUS-17816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The present dissertation investigates the management of RFID implementations in retail trade. Our work contributes to this by investigating important aspects that have so far received little attention in scientific literature. We therefore perform three studies about three important aspects of managing RFID implementations. We evaluate in our first study customer acceptance of pervasive retail systems using privacy calculus theory. The results of our study reveal the most important aspects a retailer has to consider when implementing pervasive retail systems. In our second study we analyze RFID-enabled robotic inventory taking with the help of a simulation model. The results show that retailers should implement robotic inventory taking if the accuracy rates of the robots are as high as the robots' manufacturers claim. In our third and last study we evaluate the potentials of RFID data for supporting managerial decision making. We propose three novel methods in order to extract useful information from RFID data and propose a generic information extraction process. Our work is geared towards practitioners who want to improve their RFID-enabled processes and towards scientists conducting RFID-based research.}, subject = {RFID}, language = {en} } @article{WeigandWurmDechetal.2019, author = {Weigand, Matthias and Wurm, Michael and Dech, Stefan and Taubenb{\"o}ck, Hannes}, title = {Remote sensing in environmental justice research—a review}, series = {ISPRS International Journal of Geo-Information}, volume = {8}, journal = {ISPRS International Journal of Geo-Information}, number = {1}, issn = {2220-9964}, doi = {10.3390/ijgi8010020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196950}, year = {2019}, abstract = {Human health is known to be affected by the physical environment. Various environmental influences have been identified to benefit or challenge people's physical condition. Their heterogeneous distribution in space results in unequal burdens depending on the place of living. In addition, since societal groups tend to also show patterns of segregation, this leads to unequal exposures depending on social status. In this context, environmental justice research examines how certain social groups are more affected by such exposures. Yet, analyses of this per se spatial phenomenon are oftentimes criticized for using "essentially aspatial" data or methods which neglect local spatial patterns by aggregating environmental conditions over large areas. Recent technological and methodological developments in satellite remote sensing have proven to provide highly detailed information on environmental conditions. This narrative review therefore discusses known influences of the urban environment on human health and presents spatial data and applications for analyzing these influences. Furthermore, it is discussed how geographic data are used in general and in the interdisciplinary research field of environmental justice in particular. These considerations include the modifiable areal unit problem and ecological fallacy. In this review we argue that modern earth observation data can represent an important data source for research on environmental justice and health. Especially due to their high level of spatial detail and the provided large-area coverage, they allow for spatially continuous description of environmental characteristics. As a future perspective, ongoing earth observation missions, as well as processing architectures, ensure data availability and applicability of 'big earth data' for future environmental justice analyses.}, language = {en} } @article{WeidnerLardenoijeEijssenetal.2019, author = {Weidner, Magdalena T. and Lardenoije, Roy and Eijssen, Lars and Mogavero, Floriana and De Groodt, Lilian P. M. T. and Popp, Sandy and Palme, Rupert and F{\"o}rstner, Konrad U. and Strekalova, Tatyana and Steinbusch, Harry W. M. and Schmitt-B{\"o}hrer, Angelika G. and Glennon, Jeffrey C. and Waider, Jonas and van den Hove, Daniel L. A. and Lesch, Klaus-Peter}, title = {Identification of cholecystokinin by genome-wide profiling as potential mediator of serotonin-dependent behavioral effects of maternal separation in the amygdala}, series = {Frontiers in Neuroscience}, volume = {13}, journal = {Frontiers in Neuroscience}, doi = {10.3389/fnins.2019.00460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201340}, pages = {460}, year = {2019}, abstract = {Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2\(^{-/-}\)) and heterozygous (Tph2\(^{+/-}\)) mice, and their wildtype littermates (Tph2\(^{+/+}\)) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2\(^{-/-}\) mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2\(^{+/-}\) mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2\(^{+/-}\) mice when compared to their Tph2\(^{-/-}\) littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability.}, language = {en} } @article{WegenerSauer2019, author = {Wegener, Sonja and Sauer, Otto A.}, title = {The effective point of measurement for depth-dose measurements in small MV photon beams with different detectors}, series = {Medical Physics}, volume = {46}, journal = {Medical Physics}, number = {11}, doi = {10.1002/mp.13788}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206148}, pages = {5209-5215}, year = {2019}, abstract = {Purpose: The effective point of measurement (EPOM) of cylindrical ionization chambers differs from their geometric center. The exact shift depends on chamber construction details, above all the chamber size, and to some degree on the field-size and beam quality. It generally decreases as the chamber dimensions get smaller. In this work, effective points of measurement in small photon fields of a range of cylindrical chambers of different sizes are investigated, including small chambers that have not been studied previously. Methods: In this investigation, effective points of measurement for different ionization chambers (Farmer type, scanning chambers, micro-ionization chambers) and solid state detectors were determined by measuring depth-ionization curves in a 6 MV beam in field sizes between 2 9 2 cm2 and 10 9 10 cm2 and comparing those curves with curves measured with plane-parallel chambers. Results: It was possible to average the results to one shift per detector, as the results were sufficiently independent of the studied field sizes. For cylindrical ion chambers, shifts of the EPOM were determined to be between 0.49 and 0.30 times the inner chamber radius from the reference point. Conclusions: We experimentally confirmed the previously reported decrease of the EPOM shift with decreasing detector size. Highly accurate data for a large range of detectors, including new very small ones, were determined. Thus, small chambers noticeably differ from the 0.5-times to 0.6-times the inner chamber radius recommendations in current dosimetry protocols. The detector-individual EPOMs need to be considered for measurements of depth-dose curves.}, language = {en} } @article{WeberLorenzHemmings2019, author = {Weber, Silvana and Lorenz, Christopher and Hemmings, Nicola}, title = {Improving stress and positive mental health at work via an app-based intervention: a large-scale multi-center randomized control trial}, series = {Frontiers in Psychology}, volume = {10}, journal = {Frontiers in Psychology}, number = {2745}, issn = {1664-1078}, doi = {10.3389/fpsyg.2019.02745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-194337}, year = {2019}, abstract = {Mobile health interventions (i.e., "apps") are used to address mental health and are an increasingly popular method available to both individuals and organizations to manage workplace stress. However, at present, there is a lack of research on the effectiveness of mobile health interventions in counteracting or improving stress-related health problems, particularly in naturalistic, non-clinical settings. This project aimed at validating a mobile health intervention (which is theoretically grounded in the Job Demands-Resources Model) in preventing and managing stress at work. Within the mobile health intervention, employees make an evidence-based, personalized, psycho-educational journey to build further resources, and thus, reduce stress. A large-scale longitudinal randomized control trial, conducted with six European companies over 6 weeks using four measurement points, examined indicators of mental health via measures of stress, wellbeing, resilience, and sleep. The data were analyzed by means of hierarchical multilevel models for repeated measures, including both self-report measures and user behavior metrics from the app. The results (n = 532) suggest that using the mobile health intervention (vs. waitlist control group) significantly improved stress and wellbeing over time. Higher engagement in the intervention increased the beneficial effects. Additionally, use of the sleep tracking function led to an improvement in sleeping troubles. The intervention had no effects on measures of physical health or social community at work. Theoretical and practical implications of these findings are discussed, focusing on benefits and challenges of using technological solutions for organizations to support individuals' mental health in the workplace.}, language = {en} } @phdthesis{Weber2019, author = {Weber, Manuel}, title = {Action-based quantum Monte Carlo approach to fermion-boson models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157643}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This work deals with the development and application of novel quantum Monte Carlo methods to simulate fermion-boson models. Our developments are based on the path-integral formalism, where the bosonic degrees of freedom are integrated out exactly to obtain a retarded fermionic interaction. We give an overview of three methods that can be used to simulate retarded interactions. In particular, we develop a novel quantum Monte Carlo method with global directed-loop updates that solves the autocorrelation problem of previous approaches and scales linearly with system size. We demonstrate its efficiency for the Peierls transition in the Holstein model and discuss extensions to other fermion-boson models as well as spin-boson models. Furthermore, we show how with the help of generating functionals bosonic observables can be recovered directly from the Monte Carlo configurations. This includes estimators for the boson propagator, the fidelity susceptibility, and the specific heat of the Holstein model. The algorithmic developments of this work allow us to study the specific heat of the spinless Holstein model covering its entire parameter range. Its key features are explained from the single-particle spectral functions of electrons and phonons. In the adiabatic limit, the spectral properties are calculated exactly as a function of temperature using a classical Monte Carlo method and compared to results for the Su-Schrieffer-Heeger model.}, subject = {Monte-Carlo-Simulation}, language = {en} } @article{WaltherWagnerKurzai2019, author = {Walther, Grit and Wagner, Lysett and Kurzai, Oliver}, title = {Updates on the taxonomy of Mucorales with an emphasis on clinically important taxa}, series = {Journal of Fungi}, volume = {5}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof5040106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193081}, year = {2019}, abstract = {Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus. The species concept of Rhizopus arrhizus (syn. R. oryzae) is still a matter of debate. Currently, species identification of the Mucorales is best performed by sequencing of the internal transcribed spacer (ITS) region. Ecologically, the Mucorales represent a diverse group but for the majority of taxa, the ecological role and the geographic distribution remain unknown. Understanding the biology of these opportunistic fungal pathogens is a prerequisite for the prevention of infections, and, consequently, studies on the ecology of the Mucorales are urgently needed.}, language = {en} } @phdthesis{Walter2019, author = {Walter, J{\"u}rgen Christian}, title = {Automation in Software Performance Engineering Based on a Declarative Specification of Concerns}, doi = {10.25972/OPUS-18090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180904}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Software performance is of particular relevance to software system design, operation, and evolution because it has a significant impact on key business indicators. During the life-cycle of a software system, its implementation, configuration, and deployment are subject to multiple changes that may affect the end-to-end performance characteristics. Consequently, performance analysts continually need to provide answers to and act based on performance-relevant concerns. To ensure a desired level of performance, software performance engineering provides a plethora of methods, techniques, and tools for measuring, modeling, and evaluating performance properties of software systems. However, the answering of performance concerns is subject to a significant semantic gap between the level on which performance concerns are formulated and the technical level on which performance evaluations are actually conducted. Performance evaluation approaches come with different strengths and limitations concerning, for example, accuracy, time-to-result, or system overhead. For the involved stakeholders, it can be an elaborate process to reasonably select, parameterize and correctly apply performance evaluation approaches, and to filter and interpret the obtained results. An additional challenge is that available performance evaluation artifacts may change over time, which requires to switch between different measurement-based and model-based performance evaluation approaches during the system evolution. At model-based analysis, the effort involved in creating performance models can also outweigh their benefits. To overcome the deficiencies and enable an automatic and holistic evaluation of performance throughout the software engineering life-cycle requires an approach that: (i) integrates multiple types of performance concerns and evaluation approaches, (ii) automates performance model creation, and (iii) automatically selects an evaluation methodology tailored to a specific scenario. This thesis presents a declarative approach —called Declarative Performance Engineering (DPE)— to automate performance evaluation based on a humanreadable specification of performance-related concerns. To this end, we separate the definition of performance concerns from their solution. The primary scientific contributions presented in this thesis are: A declarative language to express performance-related concerns and a corresponding processing framework: We provide a language to specify performance concerns independent of a concrete performance evaluation approach. Besides the specification of functional aspects, the language allows to include non-functional tradeoffs optionally. To answer these concerns, we provide a framework architecture and a corresponding reference implementation to process performance concerns automatically. It allows to integrate arbitrary performance evaluation approaches and is accompanied by reference implementations for model-based and measurement-based performance evaluation. Automated creation of architectural performance models from execution traces: The creation of performance models can be subject to significant efforts outweighing the benefits of model-based performance evaluation. We provide a model extraction framework that creates architectural performance models based on execution traces, provided by monitoring tools.The framework separates the derivation of generic information from model creation routines. To derive generic information, the framework combines state-of-the-art extraction and estimation techniques. We isolate object creation routines specified in a generic model builder interface based on concepts present in multiple performance-annotated architectural modeling formalisms. To create model extraction for a novel performance modeling formalism, developers only need to write object creation routines instead of creating model extraction software from scratch when reusing the generic framework. Automated and extensible decision support for performance evaluation approaches: We present a methodology and tooling for the automated selection of a performance evaluation approach tailored to the user concerns and application scenario. To this end, we propose to decouple the complexity of selecting a performance evaluation approach for a given scenario by providing solution approach capability models and a generic decision engine. The proposed capability meta-model enables to describe functional and non-functional capabilities of performance evaluation approaches and tools at different granularities. In contrast to existing tree-based decision support mechanisms, the decoupling approach allows to easily update characteristics of solution approaches as well as appending new rating criteria and thereby stay abreast of evolution in performance evaluation tooling and system technologies. Time-to-result estimation for model-based performance prediction: The time required to execute a model-based analysis plays an important role in different decision processes. For example, evaluation scenarios might require the prediction results to be available in a limited period of time such that the system can be adapted in time to ensure the desired quality of service. We propose a method to estimate the time-to-result for modelbased performance prediction based on model characteristics and analysis parametrization. We learn a prediction model using performancerelevant features thatwe determined using statistical tests. We implement the approach and demonstrate its practicability by applying it to analyze a simulation-based multi-step performance evaluation approach for a representative architectural performance modeling formalism. We validate each of the contributions based on representative case studies. The evaluation of automatic performance model extraction for two case study systems shows that the resulting models can accurately predict the performance behavior. Prediction accuracy errors are below 3\% for resource utilization and mostly less than 20\% for service response time. The separate evaluation of the reusability shows that the presented approach lowers the implementation efforts for automated model extraction tools by up to 91\%. Based on two case studies applying measurement-based and model-based performance evaluation techniques, we demonstrate the suitability of the declarative performance engineering framework to answer multiple kinds of performance concerns customized to non-functional goals. Subsequently, we discuss reduced efforts in applying performance analyses using the integrated and automated declarative approach. Also, the evaluation of the declarative framework reviews benefits and savings integrating performance evaluation approaches into the declarative performance engineering framework. We demonstrate the applicability of the decision framework for performance evaluation approaches by applying it to depict existing decision trees. Then, we show how we can quickly adapt to the evolution of performance evaluation methods which is challenging for static tree-based decision support systems. At this, we show how to cope with the evolution of functional and non-functional capabilities of performance evaluation software and explain how to integrate new approaches. Finally, we evaluate the accuracy of the time-to-result estimation for a set of machinelearning algorithms and different training datasets. The predictions exhibit a mean percentage error below 20\%, which can be further improved by including performance evaluations of the considered model into the training data. The presented contributions represent a significant step towards an integrated performance engineering process that combines the strengths of model-based and measurement-based performance evaluation. The proposed performance concern language in conjunction with the processing framework significantly reduces the complexity of applying performance evaluations for all stakeholders. Thereby it enables performance awareness throughout the software engineering life-cycle. The proposed performance concern language removes the semantic gap between the level on which performance concerns are formulated and the technical level on which performance evaluations are actually conducted by the user.}, subject = {Software}, language = {en} } @article{WallmannSperlichHoffmannSaldittetal.2019, author = {Wallmann-Sperlich, Birgit and Hoffmann, Sophie and Salditt, Anne and Bipp, Tanja and Froboese, Ingo}, title = {Moving to an "active" biophilic designed office workplace: a pilot study about the effects on sitting time and sitting habits of office-based workers}, series = {International Journal of Environmental Research and Public Health}, volume = {16}, journal = {International Journal of Environmental Research and Public Health}, number = {9}, issn = {1660-4601}, doi = {10.3390/ijerph16091559}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197371}, pages = {1559}, year = {2019}, abstract = {Promising initial insights show that offices designed to permit physical activity (PA) may reduce workplace sitting time. Biophilic approaches are intended to introduce natural surroundings into the workplace, and preliminary data show positive effects on stress reduction and elevated productivity within the workplace. The primary aim of this pilot study was to analyze changes in workplace sitting time and self-reported habit strength concerning uninterrupted sitting and PA during work, when relocating from a traditional office setting to "active" biophilic-designed surroundings. The secondary aim was to assess possible changes in work-associated factors such as satisfaction with the office environment, work engagement, and work performance, among office staff. In a pre-post designed field study, we collected data through an online survey on health behavior at work. Twelve participants completed the survey before (one-month pre-relocation, T1) and twice after the office relocation (three months (T2) and seven months post-relocation (T3)). Standing time per day during office hours increased from T1 to T3 by about 40 min per day (p < 0.01). Other outcomes remained unaltered. The results suggest that changing office surroundings to an active-permissive biophilic design increased standing time during working hours. Future larger-scale controlled studies are warranted to investigate the influence of office design on sitting time and work-associated factors during working hours in depth.}, language = {en} } @article{WajantSiegmund2019, author = {Wajant, Harald and Siegmund, Daniela}, title = {TNFR1 and TNFR2 in the control of the life and death balance of macrophages}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {91}, doi = {10.3389/fcell.2019.00091}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201551}, year = {2019}, abstract = {Macrophages stand in the first line of defense against a variety of pathogens but are also involved in the maintenance of tissue homeostasis. To fulfill their functions macrophages sense a broad range of pathogen- and damage-associated molecular patterns (PAMPs/DAMPs) by plasma membrane and intracellular pattern recognition receptors (PRRs). Intriguingly, the overwhelming majority of PPRs trigger the production of the pleiotropic cytokine tumor necrosis factor-alpha (TNF). TNF affects almost any type of cell including macrophages themselves. TNF promotes the inflammatory activity of macrophages but also controls macrophage survival and death. TNF exerts its activities by stimulation of two different types of receptors, TNF receptor-1 (TNFR1) and TNFR2, which are both expressed by macrophages. The two TNF receptor types trigger distinct and common signaling pathways that can work in an interconnected manner. Based on a brief general description of major TNF receptor-associated signaling pathways, we focus in this review on research of recent years that revealed insights into the molecular mechanisms how the TNFR1-TNFR2 signaling network controls the life and death balance of macrophages. In particular, we discuss how the TNFR1-TNFR2 signaling network is integrated into PRR signaling.}, language = {en} } @article{WajantBeilhack2019, author = {Wajant, Harald and Beilhack, Andreas}, title = {Targeting regulatory T cells by addressing tumor necrosis factor and its receptors in allogeneic hematopoietic cell transplantation and cancer}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {2040}, doi = {10.3389/fimmu.2019.02040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201578}, year = {2019}, abstract = {An intricate network of molecular and cellular actors orchestrates the delicate balance between effector immune responses and immune tolerance. The pleiotropic cytokine tumor necrosis factor-alpha (TNF) proves as a pivotal protagonist promoting but also suppressing immune responses. These opposite actions are accomplished through specialist cell types responding to TNF via TNF receptors TNFR1 and TNFR2. Recent findings highlight the importance of TNFR2 as a key regulator of activated natural FoxP3+ regulatory T cells (Tregs) in inflammatory conditions, such as acute graft-vs.-host disease (GvHD) and the tumor microenvironment. Here we review recent advances in our understanding of TNFR2 signaling in T cells and discuss how these can reconcile seemingly conflicting observations when manipulating TNF and TNFRs. As TNFR2 emerges as a new and attractive target we furthermore pinpoint strategies and potential pitfalls for therapeutic targeting of TNFR2 for cancer treatment and immune tolerance after allogeneic hematopoietic cell transplantation.}, language = {en} } @article{Wajant2019, author = {Wajant, Harald}, title = {Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {7}, doi = {10.3390/cancers11070954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202416}, pages = {954}, year = {2019}, abstract = {Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.}, language = {en} } @article{Wajant2019, author = {Wajant, Harald}, title = {Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {7}, doi = {10.3390/cancers11070954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201833}, pages = {954}, year = {2019}, abstract = {Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.}, language = {en} } @article{WaiderPoppMlinaretal.2019, author = {Waider, Jonas and Popp, Sandy and Mlinar, Boris and Montalbano, Alberto and Bonfiglio, Francesco and Aboagye, Benjamin and Thuy, Elisabeth and Kern, Raphael and Thiel, Christopher and Araragi, Naozumi and Svirin, Evgeniy and Schmitt-B{\"o}hrer, Angelika G. and Corradetti, Renato and Lowry, Christopher A. and Lesch, Klaus-Peter}, title = {Serotonin deficiency increases context-dependent fear learning through modulation of hippocampal activity}, series = {Frontiers in Neuroscience}, volume = {13}, journal = {Frontiers in Neuroscience}, number = {245}, issn = {1662-453X}, doi = {10.3389/fnins.2019.00245}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196077}, year = {2019}, abstract = {Brain serotonin (5-hydroxytryptamine, 5-HT) system dysfunction is implicated in exaggerated fear responses triggering various anxiety-, stress-, and trauma-related disorders. However, the underlying mechanisms are not well understood. Here, we investigated the impact of constitutively inactivated 5-HT synthesis on context-dependent fear learning and extinction using tryptophan hydroxylase 2 (Tph2) knockout mice. Fear conditioning and context-dependent fear memory extinction paradigms were combined with c-Fos imaging and electrophysiological recordings in the dorsal hippocampus (dHip). Tph2 mutant mice, completely devoid of 5-HT synthesis in brain, displayed accelerated fear memory formation and increased locomotor responses to foot shock. Furthermore, recall of context-dependent fear memory was increased. The behavioral responses were associated with increased c-Fos expression in the dHip and resistance to foot shock-induced impairment of hippocampal long-term potentiation (LTP). In conclusion, increased context-dependent fear memory resulting from brain 5-HT deficiency involves dysfunction of the hippocampal circuitry controlling contextual representation of fear-related behavioral responses.}, language = {en} } @phdthesis{Wahl2019, author = {Wahl, Joachim}, title = {The Use of Ionic Liquids in Capillary Electrophoresis Enantioseparation}, doi = {10.25972/OPUS-17639}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Two chiral chemical molecules being mirror images of each other, also referred to as enantiomers, may have different pharmacokinetic, pharmacodynamic, and toxicological effects. Thus, pharmaceutical manufacturers and authorities are increasingly interested in the approval of enantiopure drugs. However, the isomeric purity and the limits for isomeric impurities have to be specified applying enantioselective analytical methods, such as capillary electrophoresis. The separation of enantiomers in capillary electrophoresis may be improved by the addition of ionic liquids to the background electrolyte. The aim of this work was to investigate the influence of different separation conditions on the enantioseparation of phenethylamines in background electrolytes containing ionic liquids based on tetrabutylammonium cations. Best chiral separations were achieved at acidic pH values using phosphate buffers containing 125 mmol/L tetrabutylammonium based salts. Different reasons explaining enhanced enantioseparations in buffers containing ionic liquids were found. First, due to an improvement of the cyclodextrin solubility, the addition of ionic liquids to the background electrolyte enables the use of higher concentrations of these chiral selector. Furthermore, the adsorption of tetrabutylammonium cations to the negatively charged capillary surface results in a reduction of the electroosmotic flow. Hence, the resulting prolongation of migration times leads to a longer period of time for the separation of temporarily formed diastereomeric analyte cyclodextrin complexes, which yields improved enantioseparation. Additionally, due to a decrease of the adsorption of positively charged phenethylamine analyte molecules to capillary surface silanol groups, the adsorption of ionic liquid cations inhibits peak broadening. A further reason explaining an enhanced enantioseparation by the addition of ionic liquids to the background electrolyte is a competition between tetrabutylammonium cations and analyte enantiomers for the inclusion into cyclodextrin cavities. Furthermore, the influence of different chiral counterions, combined with tetrabutylammonium cations, on the enantioseparation of phenethylamines was investigated. Solely anions based on the basic proteinogenic amino acids L lysine and L arginine yielded chiral separation results superior to those achieved using achiral tetrabutylammonium chloride as background electrolyte additive. Especially the application of tetrabutylammonium L argininate gave very good enantioseparations of all investigated ephedrine derivatives, which might be explained by the ability of L arginine to affect the formation of complexes between analytes and cyclodextrins. Besides the investigation of the influence of ionic liquids on the enantioseparation, complexes between phenethylamine enantiomers and β cyclodextrin derivatives were characterized by affinity capillary electrophoresis. The binding constants between analyte enantiomers and cyclodextrins and the electrophoretic mobilities of the temporarily formed complexes were determined and compared to the observed chiral resolution values. While neither the calculated binding constants nor their differences correlated with the quality of the enantioseparation, a strong correlation between the differences of the electrophoretic mobilities of the complexes and the chiral resolution values was found.}, subject = {Kapillarelektrophorese}, language = {en} } @phdthesis{Wagner2019, author = {Wagner, Wolfgang}, title = {Supramolecular Block Copolymers by Seeded Living Supramolecular Polymerization of Perylene Bisimides}, doi = {10.25972/OPUS-19300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The research on supramolecular polymerization has undergone a rapid development in the last two decades, particularly since supramolecular polymers exhibit a broad variety of functionalities and applications in organic electronics, biological science or as functional materials (Chapter 2.1). Although former studies have focused on investigation of the thermodynamics of supramolecular polymerization (Chapter 2.2), the academic interest in the recent years shifted towards gaining insight into kinetically controlled self-assembly and pathway complexity to generate novel out-of-equilibrium architectures with interesting nanostructures and features (Chapter 2.3). Along this path, the concepts of seeded and living supramolecular polymerization were recently developed to enable the formation of supramolecular polymers with controlled length and low polydispersity under precise kinetic control (Chapter 2.4). Besides that, novel strategies were developed to achieve supramolecular copolymerization resulting in complex multicomponent nanostructures with different structural motives. The classification of these supramolecular copolymers on the basis of literature examples and an overview of previously reported principles to create such supramolecular architectures are provided in Chapter 2.5. The aim of the thesis was the non-covalent synthesis of highly desirable supramolecular block copolymers by the approach of living seeded supramolecular polymerization and to study the impact of the molecular shape of the monomeric building blocks on the supramolecular copolymerization. Based on the structure of the previously investigated PBI organogelator H-PBI a series of novel PBIs, bearing identical hydrogen-bonding amide side-groups in imide-position and various kind or number of substituents in bay-position, was synthesized and analyzed within this thesis. The new PBIs were successfully obtained in three steps starting from the respective bromo-substituted perylene-3,4:9,10-tetracarboxylic acid tetrabutylesters or from the N,N'-dicyclohexyl-1,7-dibromoperylene-3,4:9,10-tetracarboxylic acid bisimide. All target compounds were obtained in the final step by imidization reactions of the respective perylene tetracarboxylic acid bisanhydride precursors with N-(2-aminoethyl)-3,4,5-tris(dodecyloxy)-benzamide and were fully characterized by 1H and 13C NMR spectroscopy as well as high resolution mass spectrometry. The variation of bay-substituents strongly changes the optical properties of the monomeric PBIs which were investigated by UV/vis and fluorescence spectroscopy. The increase of the number of the methoxy-substituents provokes, for example, a red-shift of the absorption maxima concomitant with a decrease of extinction coefficients and leads to a drastic increase of the fluorescence quantum yields. Furthermore, the molecular geometry of the PBIs is also affected by variations of the bay-substituents. Thus, increasing the steric demand of the bay-substituents leads to an enlargement of the twist angles of the PBI cores as revealed by DFT calculations. Especially the 1,7-dimethoxy bay-substituted MeO-PBI proved to be very well-suited for the studies envisioned within this thesis. The self-assembly of this PBI derivative was analyzed in detail by UV/vis, fluorescence and FT-IR spectroscopy as well as atomic force microscopy (Chapter 3). These studies revealed that MeO-PBI forms in a solvent mixture of methylcyclohexane and toluene (2:1, v/v) kinetically trapped off-pathway H-aggregated nanoparticles upon fast cooling of a monomeric solution from 90 to 20 °C. However, upon slow cooling of the monomer solution fluorescent J-type nanofibers are formed by π π interactions and intermolecular hydrogen-bonding. The kinetically metastable off-pathway H-aggregates can be transformed into the thermodynamically more favored J-type aggregates by addition of seeds, which are produced by ultrasonication of the polymeric nanofibers. Interestingly, the living character of this seed-induced supramolecular polymerization process was proven by a newly designed multicycle polymerization experimental protocol. This living polymerization experiment clearly proves, that the polymerization can only occur at the "active" ends of the polymeric seed and that almost no recombination or chain termination processes are present. Hence, the approach of living supramolecular polymerization enables the formation of supramolecular polymers with controlled length and narrow polydispersity. In Chapter 4 the copolymerization of MeO-PBI with the structurally similar 1,7-dichloro (Cl-PBI) and 1,7-dimethylthio (MeS-PBI) bay-substituted PBIs is studied in detail. Both PBIs form analogous to MeO-PBI kinetically trapped off-pathway aggregates, which can be converted into the thermodynamically stable supramolecular polymers by seed-induced living supramolecular polymerization under precise kinetic control. However, the stability of the kinetically trapped aggregates of Cl-PBI and MeS-PBI is distinctly reduced compared to that of MeO-PBI, because the π-π-interactions of the kinetically metastable aggregates are hampered through the increased twisting of the PBI-cores of the former PBIs. UV/vis studies revealed that the two-component seeded copolymerization of the kinetically trapped state of MeO-PBI with seeds of Cl-PBI leads to the formation of unprecedented supramolecular block copolymers with A-B-A pattern by a living supramolecular polymerization process at the termini of the seeds. Remarkably, the resulting A-B-A block pattern of the obtained copolymers was clearly confirmed by atomic force microscopy studies as the respective blocks formed by the individual monomeric units could be distinguished by the pitches of the helical nanofibers. Moreover, detailed UV/vis and AFM studies have shown that by inverted two-component seed-induced polymerization, e.g., upon addition of seeds of MeO-PBI to the kinetically trapped aggregates of Cl-PBI, triblock supramolecular copolymers with B-A-B pattern can be generated. The switching of the block pattern could only be achieved because of the perfectly matching conditions for the copolymerization process and the tailored molecular geometry of the individual building blocks of both PBIs. These studies have demonstrated for the first time, that the block pattern of a supramolecular copolymer can be modulated by the experimental protocol through the approach of living supramolecular polymerization. Furthermore, by UV/vis analysis of the living copolymerization of MeO-PBI and MeS-PBI similar results were obtained showing also the formation of both A-B-A and B-A-B type supramolecular block copolymers. Although for these two PBIs the individual blocks could not be identified by AFM because the helical nanofibers of both PBIs exhibit identical helical pitches, these studies revealed for the first time that the approach of seeded living polymerization is not limited to a special pair of monomeric building blocks. In the last part of the thesis (Chapter 5) a systematic study on the two-component living copolymerization of PBIs with various sterical demanding bay-substituents is provided. Thus, a series of PBIs containing identical hydrogen-bonding amide groups in imide position but variable number (1-MeO-PBI, MeO-PBI, 1,6,7-MeO-PBI, 1,6,7,12-MeO-PBI) or size (EtO-PBI, iPrO-PBI) of alkoxy bay-substituents was investigated. The molecular geometry of the monomeric building blocks has a strong impact on the thermodynamically and even more pronounced on the kinetically controlled aggregation in solvent mixtures of MCH and Tol. While the mono- and dialkoxy-substituted PBIs form kinetically metastable species, the self-assembly of the tri- and tetramethoxy-substituted PBIs (1,6,7-MeO-PBI and 1,6,7,12-MeO-PBI) is completely thermodynamically controlled. The two 1,7-alkoxy substituted PBIs (EtO-PBI, iPrO-PBI) form very similar to MeO-PBI kinetically off-pathway H-aggregates and thermodynamically more favored J-type aggregates. However, the stability of the kinetically metastable state is drastically lower and the conversion into the thermodynamically favored state much faster than for MeO-PBI. In contrast, the monomethoxy-substituted PBI derivative (1-MeO-PBI) forms a kinetically trapped species by intramolecular hydrogen-bonding of the monomers, which can be transformed into the thermodynamically favored nanofibers by seeded polymerization. Importantly, the two-component seeded copolymerization of the kinetically trapped MeO PBI with seeds of other PBIs of the present series was studied by UV/vis and AFM revealing that the formation of supramolecular block copolymers is only possible for appropriate combinations of PBI building blocks. Thus, the seeded polymerization of the trapped state of the moderately core-twisted MeO-PBI with the, according to DFT-calculations, structurally similar PBIs (EtO-PBI and iPrO-PBI) leads to the formation of A-B-A block copolymers, like in the seeded copolymerization of MeO-PBItrapped with seeds of Cl-PBI and MeS-PBI already described in Chapter 4. However, by addition of seeds of the almost planar PBIs (H-PBI and 1-MeO-PBI) or seeds of the strongly core-twisted PBIs (1,6,7-MeO-PBI and 1,6,7,12-MeO-PBI) to the kinetically trapped state of MeO-PBI no block copolymers can be obtained. The mismatching geometry of these molecular building blocks strongly hampers both the intermolecular hydrogen-bonding and the π-π-interactions between the two different PBIs and consequently prevents the copolymerization process. Furthermore, the studies of the two-component seeded copolymerization of the kinetically trapped species of 1-MeO-PBI with seeds of the other PBIs also corroborated that a precise shape complementarity is crucial to generate supramolecular block copolymers. Thus, by addition of seeds of H-PBI to the kinetically trapped monomers of 1-MeO-PBI supramolecular block copolymers were generated. Both PBIs exhibit an almost planar PBI core according to DFT-calculations leading to strong non-covalent interactions between these PBIs. This perfectly matching geometry of both PBIs also enables the inverted seeded copolymerization of the kinetically trapped monomers of H-PBI with 1-MeO-PBIseed concomitant with a switching of the block pattern of the supramolecular copolymer from A-B-A to B-A-B type. In contrast, the seeding with the moderately twisted (MeO-PBI, EtO-PBI and iPrO-PBI) and the strongly twisted PBIs (1,6,7-MeO-PBI and 1,6,7,12 MeO-PBI) has no effect on the kinetically trapped state of 1-MeO-PBI, because the copolymerization of these PBIs is prevented by the mismatching geometry of the molecular building blocks. In conclusion, the supramolecular polymerization and two-component seeded copolymerization of a series of PBI monomers was investigated within this thesis. The studies revealed that the thermodynamically and kinetically controlled self-assembly can be strongly modified by subtle changes of the monomeric building blocks. Moreover, the results have shown that living supramolecular polymerization is an exceedingly powerful method to generate unprecedented supramolecular polymeric nanostructures with controlled block pattern and length distribution. The formation of supramolecular block copolymers can only be achieved under precise kinetic control of the polymerization process and is strongly governed by the shape complementarity already imparted in the individual components. Thus, these insightful studies might enable a more rational design of monomeric building blocks for the non-covalent synthesis of highly complex supramolecular architectures with interesting properties for possible future applications, e.g., as novel functional materials.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Wagner2019, author = {Wagner, Martin}, title = {Chronic Kidney Disease as an Important Co-morbid Condition in Coronary Heart Disease Patients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175498}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In patients with coronary heart disease (CHD) the control of the modifiable "traditional" cardiovascular risk factors such as hypertension, dyslipidemia, diabetes, achieving/maintaining normal body weight and smoking cessation is of major importance to improve prognosis. Guideline recommendations for secondary CHD prevention include specific treatment targets for blood pressure, lipid levels, and markers of glucose metabolism for both younger and older patients. Chronic kidney disease (CKD) has been identified as a "non-traditional" risk factor for worse outcome in CHD patients, as it is associated with a markedly increased risk for subsequent CV events and mortality. The specific objectives of the current thesis-project are to investigate (a) the quality of care in a recent sample of German CHD patients and to investigate variation of risk factor control between younger and elder patients (≤70 versus >70 years), (b) to analyze the prevalence of CKD across Europe in stable CHD patients in the outpatient setting and during a hospital stay for CHD, (c) to investigate the level of awareness of CKD in German CHD patients and their treating physicians. Data from the European-wide EUROASPIRE IV study were used that include data on 7998 CHD patients in the ambulatory setting (study visit) and during a hospital stay for CHD (index). The German EUROASPIRE IV study center in W{\"u}rzburg recruited 536 patients in 2012-2013. Risk factor control was compared against the current recommendations of the European Society of Cardiology. CKD was described by stages of glomerular filtration rate (eGFR) and albuminuria. German patients were asked in an additional kidney specific module whether they have ever been told by a physician about renal impairment. The fact that CKD or acute kidney injury (AKI) was mentioned in prominent parts of the hospital discharge letter as well as correct ICD-coding of CKD or AKI served as a proxy for physician's awareness of CKD. The majority of German CHD patients was treated with the recommended drug therapies including e.g. β-blockers, anti-platelets and statins. However, treatment targets for blood pressure and LDL-cholesterol levels were not achieved in many patients (45\% and 53\%, respectively) and glycemic control in diabetic CHD patients with HbA1-levels <7\% was insufficient (61\%). A minority of patients reported on current smoking (10\%), but unhealthy life-styles e.g. overweight/obesity (85\%/37\%) were frequent. Patterns of care differed between younger and older CHD patients while older patients were less likely to receive the recommended medical CHD-therapy, were more likely to have uncontrolled blood pressure and also to be diabetic. However, a greater proportion of diabetic patients >70 years was achieving the HbA1c target, and less elder patients were current smokers or were obese. About 17\% of patients on average had CKD (eGFR< 60 ml/min/1.73m²) in the entire European sample at the study visit, and an additional 10\% had albuminuria despite preserved eGFR, with considerable variation among countries. Impaired kidney function was observed in every fifth patient admitted for CHD in the entire European dataset of the EUROASPIRE IV study. Of the German CHD patients with CKD at the study visit, only a third were aware of their renal impairment. A minority of these patients was being seen by nephrologists, however, with a higher likelihood of CKD awareness and specialist care in more advanced stages of CKD. About a third of patients admitted for CHD showed either CKD or AKI during the hospital stay, but the discharge letter mentioned chronic or acute kidney disease only in every fifth of these patients. In contrast, correct ICD coding of CKD or AKI was more complete, but still suboptimal. In summary, quality of secondary prevention in German CHD patients indicates considerably room for improvement, with life-style modifications may become an even greater factor in prevention campaigns than medical treatment into certain target ranges. Preventive therapies should also consider different needs in older individuals acknowledging physical and mental potential, other comorbidities and drug-interactions with co-medication. CKD is common in CHD patients, not only in the elderly. Since CHD and CKD affect each other and impact on worse prognosis of each other, raising the awareness of CKD among patients and physicians and considering CKD in medical therapy may improve prognosis and slow disease progression of CHD as well as CKD.}, language = {en} } @article{WagnerEikenHaubitzetal.2019, author = {Wagner, Johanna and Eiken, Barbara and Haubitz, Imme and Lichthardt, Sven and Matthes, Niels and L{\"o}b, Stefan and Klein, Ingo and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Suprapubic bladder drainage and epidural catheters following abdominal surgery—a risk for urinary tract infections?}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0209825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177731}, pages = {e0209825}, year = {2019}, abstract = {Background Epidural catheters are state of the art for postoperative analgesic in abdominal surgery. Due to neurolysis it can lead to postoperative urinary tract retention (POUR), which leads to prolonged bladder catheterization, which has an increased risk for urinary tract infections (UTI). Our aim was to identify the current perioperative management of urinary catheters and, second, to identify the optimal time of suprapubic bladder catheter removal in regard to the removal of the epidural catheter. Methods We sent a questionnaire to 102 German hospitals and analyzed the 83 received answers to evaluate the current handling of bladder drainage and epidural catheters. Then, we conducted a retrospective study including 501 patients, who received an epidural and suprapubic catheter after abdominal surgery at the University Hospital W{\"u}rzburg. We divided the patients into three groups according to the point in time of suprapubic bladder drainage removal in regard to the removal of the epidural catheter and analyzed the onset of a UTI. Results Our survey showed that in almost all hospitals (98.8\%), patients received an epidural catheter and a bladder drainage after abdominal surgery. The point in time of urinary catheter removal was equally distributed between before, simultaneously and after the removal of the epidural catheter (respectively: ~28-29\%). The retrospective study showed a catheter-associated UTI in 6.7\%. Women were affected significantly more often than men (10,7\% versus 2,5\%, p<0.001). There was a non-significant trend to more UTIs when the suprapubic catheter was removed after the epidural catheter (before: 5.7\%, after: 8.4\%). Conclusion The point in time of suprapubic bladder drainage removal in relation to the removal of the epidural catheter does not seem to correlate with the rate of UTIs. The current handling in Germany is inhomogeneous, so further studies to standardize treatment are recommended.}, language = {en} } @article{WagnerKunzChowdhuryetal.2019, author = {Wagner, Fabienne and Kunz, Tobias C. and Chowdhury, Suvagata R. and Thiede, Bernd and Fraunholz, Martin and Eger, Debora and Kozjak-Pavlovic, Vera}, title = {Armadillo repeat-containing protein 1 is a dual localization protein associated with mitochondrial intermembrane space bridging complex}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0218303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202670}, pages = {e0218303}, year = {2019}, abstract = {Cristae architecture is important for the function of mitochondria, the organelles that play the central role in many cellular processes. The mitochondrial contact site and cristae organizing system (MICOS) together with the sorting and assembly machinery (SAM) forms the mitochondrial intermembrane space bridging complex (MIB), a large protein complex present in mammalian mitochondria that partakes in the formation and maintenance of cristae. We report here a new subunit of the mammalian MICOS/MIB complex, an armadillo repeat-containing protein 1 (ArmC1). ArmC1 localizes both to cytosol and mitochondria, where it associates with the outer mitochondrial membrane through its carboxy-terminus. ArmC1 interacts with other constituents of the MICOS/MIB complex and its amounts are reduced upon MICOS/MIB complex depletion. Mitochondria lacking ArmC1 do not show defects in cristae structure, respiration or protein content, but appear fragmented and with reduced motility. ArmC1 represents therefore a peripheral MICOS/MIB component that appears to play a role in mitochondrial distribution in the cell.}, language = {en} } @article{Voulgari‐KokotaAnkenbrandGrimmeretal.2019, author = {Voulgari-Kokota, Anna and Ankenbrand, Markus J. and Grimmer, Gudrun and Steffan-Dewenter, Ingolf and Keller, Alexander}, title = {Linking pollen foraging of megachilid bees to their nest bacterial microbiota}, series = {Ecology and Evolution}, volume = {2019}, journal = {Ecology and Evolution}, number = {9}, issn = {00}, doi = {10.1002/ece3.5599}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201749}, pages = {10788-10800}, year = {2019}, abstract = {Solitary bees build their nests by modifying the interior of natural cavities, and they provision them with food by importing collected pollen. As a result, the microbiota of the solitary bee nests may be highly dependent on introduced materials. In order to investigate how the collected pollen is associated with the nest microbiota, we used metabarcoding of the ITS2 rDNA and the 16S rDNA to simultaneously characterize the pollen composition and the bacterial communities of 100 solitary bee nest chambers belonging to seven megachilid species. We found a weak correlation between bacterial and pollen alpha diversity and significant associations between the composition of pollen and that of the nest microbiota, contributing to the understanding of the link between foraging and bacteria acquisition for solitary bees. Since solitary bees cannot establish bacterial transmission routes through eusociality, this link could be essential for obtaining bacterial symbionts for this group of valuable pollinators.}, language = {en} }