@phdthesis{Suchomel2022, author = {Suchomel, Holger Maximilian}, title = {Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren}, doi = {10.25972/OPUS-27163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavit{\"a}tsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten f{\"u}r die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten. Als erstes wird die Implementierung einer elektrisch angeregten, oberfl{\"a}chenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Daf{\"u}r wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus bel{\"a}uft sich auf Q ~ 16.000, w{\"a}hrend die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensit{\"a}t, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu h{\"o}heren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Koh{\"a}renzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform f{\"u}r die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugeh{\"o}rige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearit{\"a}t in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der H{\"o}he des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugeh{\"o}rige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch gesch{\"u}tzten Defektzustandes gezeigt. Dazu geh{\"o}rt vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandl{\"u}cke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren l{\"a}sst. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erh{\"o}hten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems {\"u}ber die GrossPitaevskii-Gleichung beschrieben. Zus{\"a}tzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abh{\"a}ngigkeit von der Ladungstr{\"a}gerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zust{\"a}nde innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den r{\"a}umlichen Freiheitsgrad der PolaritonZust{\"a}nde zur{\"u}ckgef{\"u}hrt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Brodbeck2020, author = {Brodbeck, Sebastian}, title = {Elektrische und magnetische Felder zur Untersuchung und Manipulation von Exziton-Polaritonen}, doi = {10.25972/OPUS-20739}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Starke Licht-Materie-Wechselwirkung in Halbleiter-Mikroresonatoren f{\"u}hrt zur Ausbildung von Eigenmoden mit gemischtem Licht-Materie-Charakter, die als Polaritonen bezeichnet werden. Die besonderen Eigenschaften dieser bosonischen Quasiteilchen k{\"o}nnen zur Realisierung neuartiger Bauteile genutzt werden, wie etwa des Polariton-Lasers, der auf stimulierter Streuung beruht anstatt auf stimulierter Emission, durch die Photon-Lasing ausgel{\"o}st wird. Durch den direkten Zugang zu Polariton-Zust{\"a}nden in spektroskopischen Experimenten, sowie durch die M{\"o}glichkeit mit vielf{\"a}ltigen Mitteln nahezu beliebige Potentiallandschaften definieren zu k{\"o}nnen, er{\"o}ffnen sich zahlreiche weitere Anwendungsgebiete, etwa in der Quantensimulation bzw. -emulation. Mittels externer elektrischer und magnetischer Felder k{\"o}nnen Erkenntnisse {\"u}ber Polaritonen gewonnen werden, die in rein optischen Experimenten nicht zug{\"a}nglich sind. Durch die Felder, die nicht mit rein photonischen Moden wechselwirken, kann auf den Materie-Anteil der Hybridmoden zugegriffen werden. Weiterhin k{\"o}nnen die Felder zur in-situ Manipulation der Polariton-Energie genutzt werden, was f{\"u}r die Erzeugung dynamischer Potentiale relevant werden k{\"o}nnte. Der Fokus dieser Arbeit liegt daher auf der Betrachtung verschiedener Ph{\"a}nomene der Licht-Materie-Wechselwirkung unter dem Einfluss {\"a}ußerer Felder. Dazu wurden auf das jeweilige Experiment abgestimmte Strukturen und Bauteile hergestellt und in magneto-optischen oder elektro-optischen Messungen untersucht. Um elektrische Felder entlang der Wachstumsrichtung anlegen zu k{\"o}nnen, d.h. in vertikaler Geometrie, wurden dotierte Resonatoren verwendet, die mit elektrischen Kontakten auf der Probenoberfl{\"a}che und -r{\"u}ckseite versehen wurden. In diesen Bauteilen wurde die Energieverschiebung im elektrischen Feld untersucht, der sogenannte Stark-Effekt. Dieser im linearen Regime bereits mehrfach demonstrierte Effekt wurde systematisch auf den nichtlinearen Bereich des Polariton-Lasings erweitert. Dabei wurde besonderes Augenmerk auf die Probengeometrie und deren Einfluss auf die beobachteten Energieverschiebungen gelegt. Die Untersuchungen von Proben mit planarer, semi-planarer und Mikrot{\"u}rmchen-Geometrie zeigen, dass ein lateraler Einschluss der Ladungstr{\"a}ger, wie er im Mikrot{\"u}rmchen erzielt wird, zu einer Umkehrung der Energieverschiebung f{\"u}hrt. W{\"a}hrend in dieser Geometrie mit zunehmender Feldst{\"a}rke eine Blauverschiebung des unteren Polaritons gemessen wird, die durch Abschirmungseffekte erkl{\"a}rt werden kann, wird in planarer und semi-planarer Geometrie die erwartete Rotverschiebung beobachtet. In beiden F{\"a}llen k{\"o}nnen, je nach Verstimmung, Energieverschiebungen im Bereich von einigen hundert µeV gemessen werden. Die gemessenen Energieverschiebungen zeigen gute {\"U}bereinstimmung mit den Werten, die nach einem Modell gekoppelter Oszillatoren berechnet wurden. Weiterhin werden vergleichbare Energieverschiebungen unter- und oberhalb der Schwelle zum Polariton-Lasing beobachtet, sodass der Polariton-Stark-Effekt als eindeutiges Merkmal erachtet werden kann, anhand dessen optisch angeregte Polariton- und Photon-Laser eindeutig unterschieden werden k{\"o}nnen. Wird das elektrische Feld nicht entlang der Wachstumsrichtung angelegt, sondern senkrecht dazu in der Ebene der Quantenfilme, dann kommt es schon bei geringen Feldst{\"a}rken zur Feldionisation von Elektron-Loch-Paaren. Um diese Feldgeometrie zu realisieren, wurde ein Verfahren entwickelt, bei dem Kontakte direkt auf die durch einen {\"A}tzvorgang teilweise freigelegten Quantenfilme eines undotierten Mikroresonators aufgebracht werden. Durch das Anlegen einer Spannung zwischen den lateralen Kontakten kann die Polariton-Emission unterdr{\"u}ckt werden, wobei sich die Feldabh{\"a}ngigkeit der Polariton-Besetzung durch ein Modell gekoppelter Ratengleichungen reproduzieren l{\"a}sst. Die neuartige Kontaktierung erlaubt es weiterhin den Photostrom in den Quantenfilmen zu untersuchen, der proportional zur Dichte freier Ladungstr{\"a}ger ist. Dadurch l{\"a}sst sich zeigen, dass die zwei Schwellen mit nichtlinearem Anstieg der Emission, die in derartigen Proben h{\"a}ufig beobachtet werden, auf grunds{\"a}tzlich verschiedene Verst{\"a}rkungsmechanismen zur{\"u}ckgehen. An der zweiten Schwelle wird ein Abknicken des leistungsabh{\"a}ngigen Photostroms beobachtet, da dort freie Ladungstr{\"a}ger als Reservoir des Photon-Lasings dienen, deren Dichte an der Schwelle teilweise abgeklemmt wird. Die erste Schwelle hingegen, die dem Polariton-Lasing zugeordnet wird, hat keinen Einfluss auf den linear mit der Anregungsleistung ansteigenden Photostrom, da dort gebundene Elektron-Loch-Paare als Reservoir dienen. Mittels angepasster Ratengleichungsmodelle f{\"u}r Polariton- und Photon-Laser l{\"a}sst sich der ermittelte Verlauf der Ladungstr{\"a}gerdichte {\"u}ber den gesamten Leistungsbereich qualitativ reproduzieren. Abschließend wird durch ein magnetisches Feld der Einfluss der Licht-Materie-Wechselwirkung auf die Elektron-Loch-Bindung im Regime der sehr starken Kopplung beleuchtet. Durch die Messung der diamagnetischen Verschiebung wird der mittlere Elektron-Loch-Abstand von unterem und oberem Polariton f{\"u}r zwei Resonatoren mit unterschiedlich starker Licht-Materie-Wechselwirkung bestimmt. Bei geringer Kopplungsst{\"a}rke werden die Hybridmoden in guter N{\"a}herung als Linearkombinationen der ungekoppelten Licht- und Materie-Moden beschrieben. F{\"u}r den Resonator mit großer Kopplungsst{\"a}rke wird eine starke Asymmetrie zwischen unterem und oberem Polariton beobachtet. Die diamagnetische Verschiebung des oberen Polaritons steigt mit zunehmender Verstimmung auf bis etwa 2,1 meV an, was fast eine Gr{\"o}ßenordnung {\"u}ber der Verschiebung des unteren Polaritons (0,27 meV) bei derselben Verstimmung liegt und die Verschiebung des ungekoppelten Quantenfilms um mehr als den Faktor 2 {\"u}bersteigt. Das bedeutet, dass das untere Polariton durch eine Wellenfunktion beschrieben wird, dessen Materie-Anteil einen verringerten mittleren Elektron-Loch-Abstand aufweist. Im oberen Polariton ist dieser mittlere Radius deutlich gr{\"o}ßer als der eines Elektron-Loch-Paars im ungekoppelten Quantenfilm, was sich durch eine von Photonen vermittelte Wechselwirkung mit angeregten und Kontinuumszust{\"a}nden des Quantenfilms erkl{\"a}ren l{\"a}sst.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} }