@phdthesis{Pakkayil2017, author = {Pakkayil, Shijin Babu}, title = {Towards ferromagnet/superconductor junctions on graphene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis reports a successful fabrication and characterisation of ferromagnetic/superconductor junction (F/S) on graphene. The thesis preposes a fabrication method to produce F/S junctions on graphene which make use of ALD grown Al2O3 as the tunnel barrier for the ferromagnetic contacts. Measurements done on F/G/S/G/F suggests that by injecting spin polarised current into the superconductor, a spin imbalance is created in the quasiparticle density of states of the superconductor which then diffuses through the graphene channel. The observed characteristic curves are similar to the ones which are already reported on metallic ferromagnet/superconductor junctions where the spin imbalance is created using Zeeman splitting. Further measurements also show that the curves loose their characteristic shapes when the temperature is increased above the critical temperature (Tc) or when the external magnetic field is higher then the critical field (Hc) of the superconducting contact. But to prove conclusively and doubtlessly the existence of spin imbalance in ferromagnet/superconductor junctions on graphene, more devices have to be made and characterised preferably in a dilution refrigerator.}, subject = {Graphen}, language = {en} } @phdthesis{Nguyen2015, author = {Nguyen, Thanh Nam}, title = {A model system for carbohydrates interactions on single-crystalline Ru surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111485}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In this thesis, I present a model system for carbohydrate interactions with single-crystalline Ru surfaces. Geometric and electronic properties of copper phthalocyanine (CuPc) on top of graphene on hexagonal Ru(0001), rectangular Ru(10-10) and vicinal Ru(1,1,-2,10) surfaces have been studied. First, the Fermi surfaces and band structures of the three Ru surfaces were investigated by high-resolution angle-resolved photoemission spectroscopy. The experimental data and theoretical calculations allow to derive detailed information about the momentum-resolved electronic structure. The results can be used as a reference to understand the chemical and catalytic properties of Ru surfaces. Second, graphene layers were prepared on the three different Ru surfaces. Using low-energy electron diffraction and scanning tunneling microscopy, it was found that graphene can be grown in well-ordered structures on all three surfaces, hexagonal Ru(0001), rectangular Ru(10-10) and vicinal Ru(1,1,-2,10), although they have different surface symmetries. Evidence for a strong interaction between graphene and Ru surfaces is a 1.3-1.7e V increase in the graphene pi-bands binding energy with respect to free-standing graphene sheets. This energy variation is due to the hybridization between the graphene pi bands and the Ru 4d electrons, while the lattice mismatch does not play an important role in the bonding between graphene and Ru surfaces. Finally, the geometric and electronic structures of CuPc on Ru(10-10), graphene/Ru(10-10), and graphene/Ru(0001) have been studied in detail. CuPc molecules can be grown well-ordered on Ru(10-10) but not on Ru(0001). The growth of CuPc on graphene/Ru(10-10) and Ru(0001) is dominated by the Moire pattern of graphene. CuPc molecules form well-ordered structures with rectangular unit cells on graphene/Ru(10-10) and Ru(0001). The distance of adjacent CuPc molecules is 1.5 and 1.3 nm on graphene/Ru(0001) and 1.54 and 1.37 nm on graphene/Ru(10-10). This indicates that the molecule-substrate interaction dominates over the intermolecular interaction for CuPc molecules on graphene/Ru(10-10) and graphene/Ru(0001).}, subject = {Ruthenium}, language = {en} }