@phdthesis{Zarzycki2013, author = {Zarzycki, Bartosz}, title = {Element-Element Bindungsaktivierung an [Ni(iPr2Im)2] und [(η5-C5H5)Co(iPr2Im)]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77195}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die vorliegende Dissertation behandelt zum einen die mechanistischen Details von Bindungsaktivierungs-Reaktionen an Disauerstoff und weißem Phosphor mit den Komplexfragmenten 1[Ni(iPr2Im)2] und 3[(η5-C5H5)Co(iPr2Im)] und zum anderen die Regioselektivit{\"a}t von oxidativen Insertionsreaktionen des 1[Ni(iPr2Im)2]-Komplexfragments in C-X-Bindungen substituierter Fluoraromaten (X = F, OCH3, CN, H).}, subject = {Heterocyclische Carbene <-N>}, language = {de} } @phdthesis{Wirsing2023, author = {Wirsing, Sara}, title = {Computational Spectroscopic Studies with Focus on Organic Semiconductor Systems}, doi = {10.25972/OPUS-28655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work presents excited state investigations on several systems with respect to experimental spectroscopic work. The majority of projects covers the temporal evolution of excitations in thin films of organic semiconductor materials. In the first chapters, thinfilm and interface systems are build from diindeno[1,2,3-cd:1',2',3'-lm]perylene (DIP) and N,N'-bis-(2-ethylhexyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDIR-CN2) layers, in the third chapter bulk systems consist of 4,4',4"-tris[(3-methylphenyl)phenylamino] triphenylamine (m-MTDATA), 4,7-diphenyl-1,10-phenanthroline (BPhen) and tris-(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane (3TPYMB). These were investigated by aggregate-based calculations. Careful selection of methods and incorporation of geometrical relaxation and environmental effects allows for a precise energetical assignment of excitations. The biggest issue was a proper description of charge-transfer excitations, which was resolved by the application of ionization potential tuning on aggregates. Subsequent characterization of excitations and their interplay condenses the picture. Therefore, we could assign important features of the experimental spectroscopic data and explain differences between systems. The last chapter in this work covers the analysis of single molecule spectroscopy on methylbismut. This poses different challenges for computations, such as multi-reference character of low-lying excitations and an intrinsic need for a relativistic description. We resolved this by combining complete active space self-consistent field based methods with scalarrelativistic density-functional theory. Thus we were able to confidently assign the spectroscopic features and explain underlying processes.}, subject = {Theoretische Chemie}, language = {en} } @phdthesis{Szeghalmi2005, author = {Szeghalmi, Adriana Viorica}, title = {The ground and excited state molecular structure of model systems undergoing photochemical processes and the characterization of active agents by means of vibrational spectroscopy and theoretical calculations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11961}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {The present thesis reports about vibrational and quantum chemical investigations on model systems undergoing photochemical processes and pharmaceutically active compounds, respectively. Infrared (IR) and Raman spectroscopy were applied for the characterization of the ground state molecular structure. Moreover, resonance Raman (RR) spectra contain additional information about the resonantly enhanced excited state molecular structure. A quantitative resonance Raman intensity analysis in conjunction with the simultaneous simulation of the absorption spectra by means of time-dependent propagation methods was accomplished in order to extract valuable information about the excited state molecular structures of the investigated systems. Surface enhanced Raman scattering (SERS) allows one to determine the interaction and adsorption site of active agents on a metal substrate. Furthermore, density functional theory (DFT) and potential energy distribution (PED) calculations were carried out for an exact assignment of the vibrational spectra. Complete active space self consistent field (CASSCF) and configuration interaction (CI) calculations for some model systems were also performed to assess the experimental results on the excited state potential surfaces. The fundamentals of resonance Raman spectroscopy are treated in detail, describing the physical processes and emphasizing the theoretical methodologies which allow one to obtain the information about the resonantly excited state via an RR intensity analysis. The Brownian oscillator model to determine the solvent reorganization energy is briefly presented. Furthermore, the SERS enhancement mechanisms and selection rules to determine the orientation of the molecules adsorbed on the metal substrate are discussed. The Hartree-Fock approach to calculate the ground state geometry is expatiated, and the basic characteristics of the CI and CASSCF calculations are specified. The chapter ends with a short description of the DFT calculations. Chapter 4 deals with the investigation of the excited state intramolecular proton transfer of the model system, 1-hydroxy-2-acetonaphthone (HAN). The vibrations showing the highest displacement parameters correspond to stretching and in-plane deformation modes of the naphthalene ring and the conjugated carbonyl group, while the OH stretching mode exhibits no observable enhancement. The cooperative effect of the skeletal vibrations reduces the distance between the carbonyl and hydroxyl oxygen atoms in accordance with a general electron density redistribution. Hence, the leading force in the proton transfer process is the increase in electron density on the carbonyl group and the decrease of the negative charge on the hydroxyl oxygen. In chapter 5 the structural and vibrational characteristics of the organic mixed valence system N,N,N',N'-tetraphenylphenylenediamine radical cation (1+) are discussed. The resonance Raman measurements showed that at least eight vibrational modes are strongly coupled to the optical charge transfer process in (1+). These Franck-Condon active modes were assigned to symmetric vibrations. The most enhanced band corresponds to the symmetric stretching mode along the N-phenylene-N unit and exhibits the largest vibrational reorganization energy. Nevertheless, symmetric stretching modes of the phenylene and phenyl units as well as deformation modes are also coupled to the electronic process. The total vibrational reorganization energy of these symmetrical modes is dominant, while the solvent induced broadening and reorganization energy are found to be small. Hence, (1+) adopts a symmetrical delocalized Robin-Day Class III structure in the ground state. Chapter 6 reports about a vibrational spectroscopic investigation of a model organic photorefractive thiophene derivative, 2-(N,N-diethylamino)-5-(2',2'-dicyanovinyl)-thiophene. The geometry of the first excited state were optimized and the FC parameters were calculated using the configuration interaction with single excitations method. These calculations show that the contribution of the zwitterionic structure to the excited state is significantly higher than in the ground state. The resonance Raman spectra indicate that several stretching modes along the bonds connecting the donor and acceptor moieties as well as the S-C stretching vibrations are enhanced. Chapter 7 presents the vibrational analysis of an aziridinyl tripeptide, a cysteine protease inhibitor active drug. The vibrational analysis reveals stronger H-bonding of the aziridine NH unit in the solid state of the aziridinyl tripeptide than in the liquid electrophilic building block, indicating medium strong intermolecular H-bond interactions in the crystal unit. The amide hydrogen atoms of the aziridinyl tripeptide are involved in weaker H-bonds than in an epoxide analogon. Furthermore, the characteristic vibrational modes of the peptide backbone were discussed. Chapter 8 reports on the adsorption mechanism of two related anti-leukemia active agents, 6-mercaptopurine (6MP) and 6-mercaptopurine-ribose (6MPR) on a silver colloid. Both molecules adsorb through the N1 and possibly S atom on the metal surface under basic conditions. The SERS spectra recorded for acidic pH values showed that the ribose derivative exhibits a different adsorption behavior compared to the free base. 6MP probably adsorbs on the silver sol through the N9 and N3 atoms, while 6MPR interacts with the surface via the N7 and probably S atoms. Around critical biological concentrations and pH values i.e. at low concentrations and almost neutral condition (pH 7-9), 6MPR interacts with the substrate through both N7 and N1 atoms, possibly forming two differently adsorbed species, while for 6MP only the species adsorbed via N1 was evidenced.}, subject = {Photochemie}, language = {en} } @phdthesis{Sprengel2017, author = {Sprengel, Martin}, title = {A Theoretical and Numerical Analysis of a Kohn-Sham Equation and Related Control Problems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153545}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this work, multi-particle quantum optimal control problems are studied in the framework of time-dependent density functional theory (TDDFT). Quantum control problems are of great importance in both fundamental research and application of atomic and molecular systems. Typical applications are laser induced chemical reactions, nuclear magnetic resonance experiments, and quantum computing. Theoretically, the problem of how to describe a non-relativistic system of multiple particles is solved by the Schr{\"o}dinger equation (SE). However, due to the exponential increase in numerical complexity with the number of particles, it is impossible to directly solve the Schr{\"o}dinger equation for large systems of interest. An efficient and successful approach to overcome this difficulty is the framework of TDDFT and the use of the time-dependent Kohn-Sham (TDKS) equations therein. This is done by replacing the multi-particle SE with a set of nonlinear single-particle Schr{\"o}dinger equations that are coupled through an additional potential. Despite the fact that TDDFT is widely used for physical and quantum chemical calculation and software packages for its use are readily available, its mathematical foundation is still under active development and even fundamental issues remain unproven today. The main purpose of this thesis is to provide a consistent and rigorous setting for the TDKS equations and of the related optimal control problems. In the first part of the thesis, the framework of density functional theory (DFT) and TDDFT are introduced. This includes a detailed presentation of the different functional sets forming DFT. Furthermore, the known equivalence of the TDKS system to the original SE problem is further discussed. To implement the TDDFT framework for multi-particle computations, the TDKS equations provide one of the most successful approaches nowadays. However, only few mathematical results concerning these equations are available and these results do not cover all issues that arise in the formulation of optimal control problems governed by the TDKS model. It is the purpose of the second part of this thesis to address these issues such as higher regularity of TDKS solutions and the case of weaker requirements on external (control) potentials that are instrumental for the formulation of well-posed TDKS control problems. For this purpose, in this work, existence and uniqueness of TDKS solutions are investigated in the Galerkin framework and using energy estimates for the nonlinear TDKS equations. In the third part of this thesis, optimal control problems governed by the TDKS model are formulated and investigated. For this purpose, relevant cost functionals that model the purpose of the control are discussed. Henceforth, TDKS control problems result from the requirement of optimising the given cost functionals subject to the differential constraint given by the TDKS equations. The analysis of these problems is novel and represents one of the main contributions of the present thesis. In particular, existence of minimizers is proved and their characterization by TDKS optimality systems is discussed in detail. To this end, Fr{\´e}chet differentiability of the TDKS model and of the cost functionals is addressed considering \(H^1\) cost of the control. This part is concluded by deriving the reduced gradient in the \(L^2\) and \(H^1\) inner product. While the \(L^2\) optimization is widespread in the literature, the choice of the \(H^1\) gradient is motivated in this work by theoretical consideration and by resulting numerical advantages. The last part of the thesis is devoted to the numerical approximation of the TDKS optimality systems and to their solution by gradient-based optimization techniques. For the former purpose, Strang time-splitting pseudo-spectral schemes are discussed including a review of some recent theoretical estimates for these schemes and a numerical validation of these estimates. For the latter purpose, nonlinear (projected) conjugate gradient methods are implemented and are used to validate the theoretical analysis of this thesis with results of numerical experiments with different cost functional settings.}, subject = {Optimale Kontrolle}, language = {en} } @phdthesis{Remenyi2006, author = {Remenyi, Christian}, title = {Density Functional Studies on EPR Parameters and Spin-Density Distributions of Transition Metal Complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19848}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In dieser Arbeit wurden EPR-Parameter und Spindichteverteilungen von {\"U}bergangsmetallkomplexen mit Hilfe der Dichtefunktionaltheorie (DFT) berechnet. Um das Potential der DFT bei der Beschreibung solcher Systeme zu zeigen, wurden mehrere Validierungsstudien durchgef{\"u}hrt, die in den Kapiteln 3-5 vorgestellt werden. Die Kapitel 6-8 besch{\"a}ftigen sich dagegen eher mit konkreten chemischen Fragestellungen, die einige biologisch relevante {\"U}bergangsmetallkomplexe betreffen.}, subject = {Dichtefunktionalformalismus}, language = {en} } @phdthesis{Reichert2006, author = {Reichert, Matthias}, title = {Quantenchemische Berechnungen des Circular-Dichroismus' zur Strukturaufkl{\"a}rung chiraler Natur- und Wirkstoffe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21431}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Die absoluten Konfigurationen von mehr als 20 neuartigen Naturstoffen und Syntheseprodukten mit unterschiedlichen Chiralit{\"a}tselementen (stereogene Zentren, chirale Achsen und chirale Ebenen) wurden durch Vergleich ihrer experimentellen CD-Spektren mit den quantenchemisch berechneten der jeweils m{\"o}glichen Stereoisomere aufgekl{\"a}rt. Zur Simulation des molekularen CD kamen dabei semiempirische Verfahren (CNDO/S und OM2) und die zeitabh{\"a}ngige Dichtefunktionaltheorie (TDDFT) zum Einsatz.}, subject = {Zirkulardichroismus}, language = {de} } @phdthesis{Peica2006, author = {Peica, Niculina}, title = {Vibrational spectroscopy and density functional theory calculations on biological molecules}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20913}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Infrared (IR) and Raman spectroscopy are among the most widely used techniques in the physical and natural sciences today. Vibrational spectroscopy, including IR and Raman spectroscopy, has both a long and interesting history and an illustrious record of contributions to science. Spectroscopy in the pharmaceutical industry is dominated by techniques such as nuclear magnetic resonance (NMR) and mass spectrometry (MS) for the elucidation of chemical structures. Despite this, the versatility of infrared spectroscopy ensures it still remains a key technique in quality control laboratories, and in applications where solid form characterization or minimal sample preparation is a necessity. Raman spectroscopy has many uses in the pharmaceutical and chemical industry, but its strengths is in solid form analysis. It is regularly used to identify compounds, and results are used in the release of pharmaceutical and chemical products. This work consists of 8 chapters, which cover the vibrational spectroscopy beginning with the theory and instrumentation, continuing with the experimental setup and probes description, and completing with results and discussions of the experiments. The first chapter of this work introduces Raman spectroscopy as a dominant technique used in pharmaceutical and chemical industry. The theoretical background regarding vibrational spectroscopy (IR and Raman) is accounted for in the second chapter of this work, while the samples presentation, the experimental procedures, and the description of the apparatus together with the computational details are briefly specified in the third chapter. The fourth chapter investigates the concentration dependent wavenumber shifts and linewidth changes of tetrahydrofuran in a binary system. Many of the applications in food science rely heavily on Raman spectroscopy, often preceding the biomedical applications. The characterization and identification of food additives using Raman, surface-enhanced Raman spectroscopy, and theoretical calculations is in detail depicted in the fifth chapter, whereas in the sixth and seventh chapters the monitoring of several medicines and various lanthanide complexes with anticancer properties, respectively, employing IR and Raman techniques are treated. These last two chapters address applications of vibrational spectroscopy to pharmaceutical products, and include the use of vibrational spectroscopy in combinatorial chemistry and density functional theory, a modality increasingly used by the pharmaceutical industry for the discovery if new pharmacologically active substances.}, subject = {Schwingungsspektroskopie}, language = {en} } @phdthesis{Patrakov2010, author = {Patrakov, Anatoly}, title = {Anwendung der Clustern{\"a}herung zur quantenchemischen Charakterisierung der Struktur und Stabilit{\"a}t von II-VI Halbleitersystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46283}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Kaum ein Bereich der menschlichen T{\"a}tigkeit hat sich jemals so st{\"u}rmisch entwickelt, wie die Mikro- und Nanoelektronik in den letzten Jahrzehnten. Der rasche Fortschritt dieser Gebiete war m{\"o}glich, weil die Vorteile in der Anwendung der Mikroelektronik den gewaltigen Entwicklungs- und Forschungsaufwand rechtfertigten. Eine besondere Rolle spielt dabei die Herstellung von Halbleiterbauelementen durch Kristallz{\"u}chtungsmethoden. In dieser Arbeit wurden Prozesse untersucht, die sich auf der Kristalloberfl{\"a}che abspielen und somit das Wachstum von hochgeordneten Kristallstrukturen bestimmen. In den vergangenen Jahren wurden mehrere Methoden zur Untersuchung dieser Prozesse entwickelt, deren Pr{\"a}zision sich von Jahr zu Jahr unabl{\"a}ssig steigerte. In der Reihe der theoretischen Ans{\"a}tze stehen quantenchemische Methoden im Vordergrund. Eine von diesen Methoden, die Dichtefunktionaltheorie, ist aufgrund ihrer Anschaulichkeit und des relativ niedrigen Rechenaufwands das Hauptwerkzeug der vorliegenden Arbeit. Im ersten Teil dieser Arbeit wurden die Wanderungsm{\"o}glichkeiten eines Adsorbatatoms (Cd oder Te) auf der (001) Oberfl{\"a}che von CdTe (Substrat) auf DFT-Niveau im Rahmen der GGA-N{\"a}herung untersucht. Dies erforderte es, die Gesamtenergie des Systems Adsorbat-Kristall an verschiedenen Adsorptionsstellen zu berechnen. Dabei wurde nur ein Teil des Kristalls - das Adsorbat selbst und die n{\"a}chste Umgebung der Adsorptionsstelle (Quantencluster) - auf DFT-Niveau berechnet. Der Einfluss des {\"u}brigen Kristalls auf den Cluster wurde mit einem Gitter aus Punktladungen angen{\"a}hert, wobei die Te- und Cd-Atome die Ladungen \&\#8722;2 bzw. +2 trugen. Bei dem Einsatz dieses Modells ergab sich allerdings das Problem, dass es eigentlich nur auf Ionenkristalle anwendbar ist, die in guter N{\"a}herung volle Ionizit{\"a}t besitzen. CdTe stellt aber laut vielen experimentellen und theoretischen Untersuchungen eine Abstufung zwischen ionischen und kovalenten Kristallen dar, was eine gr{\"u}ndliche Analyse der Abh{\"a}ngigkeit unserer Ergebnisse von der Clustergr{\"o}ße und der Entfernung der Adsorptionsstelle von den Clusterr{\"a}ndern erforderte. Als Ergebnis wurde ein Modell entworfen, das dazu in der Lage ist, die Struktur der (2X1) Te-terminierten CdTe Oberfl{\"a}che mit ausreichender Genauigkeit wiederzugeben. Durch geeignete Wahl des Quantenclusters (ausreichende Gr{\"o}ße in den Richtungen parallel zur Oberfl{\"a}che und Platzierung der weniger polarisierbaren Cd-Kationen an den Außenfl{\"a}chen) gelang es, den Einfluss der Clusteroberfl{\"a}che auf die untersuchten Eigenschaften auf ein akzeptables Maß zu verringern. Die durchgef{\"u}hrten Berechnungen der Cd-Potentialenergiefl{\"a}che zeigen zwei Potentialt{\"o}pfe, mit den Tiefen 2.1 eV und 1.7 eV. Die Existenz dieser beiden Minima ist eng mit der Dimerisierung von Te-Atomen an der adsorbatfreien Te-Oberfl{\"a}che verbunden. Das erste, der Struktur =Te-Cdad-Te= entsprechende Minimum entsteht durch den Bruch einer Te-Te Dimerbindung beim Cd-Angriff an diese Stelle. Der zweite Potentialtopf kommt dadurch zustande, dass das Cd-Adsorbatatom mit zwei entlang der [110]-Richtung angeordneten Te2-Dimeren reagiert. Die Potentialenergiefl{\"a}che des Te-Adsorbats unterscheidet sich zwar wesentlich von der des Cd-Atoms, es gibt aber auch {\"A}hnlichkeiten. Das gilt vor allem f{\"u}r das der Struktur =Te-Tead-Te= entsprechende Minimum, das ungef{\"a}hr 2.8 eV tief ist. Wie im Fall der Cd-Adsorption entsteht diese Struktur infolge der Wechselwirkung eines adsorbierten Te-Atoms mit einem Te2-Dimer auf der Oberfl{\"a}che. Die Ergebnisse unserer Berechnungen best{\"a}tigen experimentelle Hinweise, gem{\"a}ß denen Te- und Cd-Atome aus dem Teilchenfluss, dem die (2X1)Te Oberfl{\"a}che w{\"a}hrend der MBE ausgesetzt ist, leicht adsorbiert werden. Außerdem wurden die relativ genauen Werte der Potentialbarrieren bekommen, die f{\"u}r ein besseres Verst{\"a}ndnis des Wachstumsprozesses zum Beispiel mit Hilfe von Monte-Carlo-Simulationen notwendig sind. Im Vordergrund des zweiten Teils der vorliegenden Arbeit stand die Strukturbestimmung von ZnO-Nanoclustern, die durch spezielle Kristallisationsprozesse erzeugt werden und wegen ihrer eigenartigen optischen und elektronischen Eigenschaften von großem Interesse sind. Zwei grunds{\"a}tzlich unterschiedliche Atomanordnungen wurden betrachtet, wobei festgestellt werden sollte, welche dieser Strukturen in Abh{\"a}ngigkeit von der Clustergr{\"o}ße und der Umgebung stabiler ist. Angenommen wurde dabei, dass diese Tendenz bei der weiteren Vergr{\"o}ßerung der Atomanzahl von Hundert bis mehreren Tausenden erhalten bleibt. Die Clustermodelle erster Art besaßen die f{\"u}r ZnO-Verbindungen typische Wurtzitstruktur, die anderen, sogenannten K{\"a}figcluster, bestanden aus Zn3O3- und (oder) Zn2O2-Ringen, die so verkn{\"u}pft sind, dass sie kugel- oder zylinderf{\"o}rmige Strukturen bilden. Charakteristisch f{\"u}r letztere Cluster ist eine Homogenit{\"a}t der Atomumgebung, da alle Zn- und O-Atome dreifach koordiniert sind, w{\"a}hrend sie in Wurtzitstrukturen im Wesentlichen vierfach koordiniert sind. Durch Kn{\"u}pfung zus{\"a}tzlicher Zn-O Bindungen konnte die Anzahl der in Frage kommenden Strukturen nennenswert vergr{\"o}ßert werden. Dabei entstehen vierfach koordinierten Atome und, laut den Berechnungen, deutlich stabilere Cluster. Die Rechnungen wurden sowohl im Vakuum als auch im Rahmen des COSMO Verfahrens (im „Wasser") durchgef{\"u}hrt. Sie ergaben, dass die Wurtzitstrukturen bei der Zunahme der Atomanzahl stabiler werden als ihre K{\"a}fig-Analoge. Dieses Ergebnis ist allerdings eher von theoretischem Interesse, da die experimentell in einer L{\"o}sung gez{\"u}chteten ZnO-Nanocluster an ihrer Oberfl{\"a}che mit Molek{\"u}len aus der L{\"o}sung bedeckt sind. Ein weiterer Schritt war daher, den Einfluss der Umgebung auf die Bildungsenergie durch die Abs{\"a}ttigung der Oberfl{\"a}che mit H+- und OH\&\#8722;-Ionen zu simulieren. Als Bezugspunkt f{\"u}r die Berechnung der Bildungsenergie der verschiedenen Cluster wurde der Molek{\"u}lkomplex Zn(OH)2(H2O)2 verwendet. Mit anderen Worten wurde angenommen, dass ein freies Zn2+-Ion in der L{\"o}sung von zwei OH\&\#8722;-Gruppen und zwei H2O-Molek{\"u}len umgeben ist. Die Ergebnisse zeigen, dass die Abs{\"a}ttigung einen starken Einfluss auf die Randbereiche der wurtzitartigen Cluster aus{\"u}bt. Bei fast allen Clustermodellen sind diese stark verformt, w{\"a}hrend bei den K{\"a}figstrukturen nur deutlich geringere Verzerrungen beobachtet werden. Ebenso stark ist der Einfluss auf die Bildungsenergie: Verglichen mit ihren unabges{\"a}ttigten Analogen werden alle abges{\"a}ttigte Strukturen erheblich stabiler, was auf die Tatsache zur{\"u}ckzuf{\"u}hren ist, dass durch die OH\&\#8722; -Gruppen und H+-Kationen die freien Valenzen an der Clusteroberfl{\"a}che abges{\"a}ttigt werden. Ansonsten lassen sich bei den abges{\"a}ttigten Strukturen dieselben Tendenzen erkennen, wie bei nicht abges{\"a}ttigten. So werden Wurtzitstrukturen mit zunehmender Clustergr{\"o}ße energetisch g{\"u}nstiger als K{\"a}figstrukturen mit der gleichen Anzahl an Atomen. Da es die im Rahmen dieser Arbeit festgestellten Regelm{\"a}ßigkeiten erm{\"o}glichen, die stabilsten ZnO-Atomanordnungen auf die hier Betrachteten einzuschr{\"a}nken, ergibt sich, dass die stabilste Struktur f{\"u}r Nanocluster wurtzitartig ist. Dies stimmt auch mit allen verf{\"u}gbaren experimentellen Daten {\"u}berein.}, subject = {Zwei-Sechs-Halbleiter}, language = {de} } @phdthesis{Moigno2001, author = {Moigno, Damien}, title = {Study of the ligand effects on the metal-ligand bond in some new organometallic complexes using FT-Raman and -IR spectroscopy, isotopic substitution and density functional theory techniques}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3101}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The present studies which have been performed in the work-group C-2 (Prof. W. Kiefer) within the program of the Sonderforschungsbereichs 347, deal with the FT-Raman and -IR spectroscopy on new organometallic complexes, synthesized in the work-groups B-2 (Prof. W. Malisch), B-3 (Prof. W. A. Schenk), D-1 (Prof. H. Werner) and D-4 (Prof. D. Stalke). The FT-Raman spectra recorded at 1064 nm led to very useful and interesting information. Furthermore, the DFT calculations which are known to offer promise of obtaining accurate vibrational wavenumbers, were successfully used for the assignment of the vibrational spectra. For the first time it has been possible to ascribe exactly the n(RhC) stretching mode in the vinylidene rhodium(I) complex trans-[RhF(=C=CH2)(PiPr3)2] by using isotopic substitution, in conjunction with theoretical calculations. This is also true for the complexes trans-[RhF(CO)(PiPr3)2], trans-[RhF(C2H4)(PiPr3)2], trans-[RhX(=C=CHPh)(PiPr3)2] (X = F, Cl, Br, I, Me, PhCºC) and trans-[RhX(CN-2,6-xylyl)(PiPr3)2] (X = F, Cl, Br, I, CºCPh). In addition, the comparison between the n(RhC) wavenumbers of the complexes trans-[RhF(=13C=13CH2)(PiPr3)2] and trans-[RhF(CO)(PiPr3)2], containing the isoelectronic ligands 13C=13CH2 and CO, which have the same reduced mass, indicated that the Rh-C bond is stronger in the carbonyl than in the vinylidene complex. Besides, the n(RhF) stretching mode, which has been observed at higher wavenumbers in the FT-Raman and -IR spectra of trans-[RhF(CO)(PiPr3)2], showed that the carbonyl ligand is a better p-acceptor and a less effective s-donor than the vinylidene one. Moreover, the comparison of the n(CºC) and n(Rh-C) modes from the FT-Raman spectrum of the complexes trans-[Rh(CºCPh)(L)(PiPr3)2] (L = C=CHPh, CO, CN-2,6-xylyl) point out that the p-acceptor ability of the ligand trans to CºCPh should rise in the order C=CH2 < CO < CN-2,6-xylyl \pounds C=CHPh. The investigated sensitivity of the n(RhC), n(CC), n(CO) and n(CN) vibrational modes to the electronic modifications occuring in the vinylidene, carbonyl, ethylene and isonitrile complexes, should allow in the future the examination of the p-acceptor or p-donor properties of further ligands. Likewise, we were able to characterize the influence of various X ligands on the RhC bond by using the n(RhC) stretching mode as a probe for the weakening of this. The calculated wavenumbers of the n(RhC) for the vinylidene complexes trans-[RhX(=C=CHR)(PiPr3)2], where R = H or Ph, suggested that the strength of the Rh=C bond increases along the sequence X = CºCPh < CH3 < I < Br < Cl < F. For the series of carbonyl compounds trans-[RhX(CO)(PiPr3)2], where X = F, Cl, Br and I, analogous results have been obtained and confirmed from the model compounds trans-[RhX(CO)(PMe3)2]. Since, the calculated vibrational modes for the ethylene complex trans-[RhF(C2H4)(PiPr3)2] were in good agreement with the experimental results and supported the description of this complex as a metallacyclopropane, we were interested in getting more information upon this class of compounds. In this context, we have recorded the FT-Raman and -IR spectra of the thioaldehyde complexes mer-[W(CO)3(dmpe)(h2-S=CH2)] and mer-[W(CO)3(dmpe)(h2-S=CD2)] which have been synthezised by B-3. The positions of the different WL vibrational modes anticipated by the DFT calculations, were consistent with the experimental results. Indeed, the analysis of the band shifts in the FT-Raman and -IR spectra of the isotopomer mer-[W(CO)3(dmpe)(h2-S=CD2)] confirmed our assignment. The different stereoisomers of complex mer-[W(CO)3(dmpe)(h2-S=CH2)] were investigated too, since RMN and IR-data have shown that complex mer-[W(CO)3(dmpe)(h2-S=CH2)] lead in solution to an equilibrium. Since the information on the vibrational spectra of the molybdenum and tungsten complexes Cp(CO)2M-PR2-X (M = Mo, W; R = Me, tBu, Ph; X = S, Se) is very scarce, we extended our research work to this class of compounds. We have tried to elucidate the bonding properties in these chalcogenoheterocycle complexes by taking advantage of the mass effect on the different metal atoms (W vs. Mo). Thus, the observed band shifts allowed to assign most of the ML fundamental modes of these complexes. This project and the following one were a cooperation within the work-group B-2. The Raman and IR spectra of the matrix isolated photoproducts expected by the UV irradiation of the iron silyl complex Cp(CO)2FeSiH2CH3 have been already reported by Claudia Fickert and Volker Nagel in their PhD-thesis. Since no exact assignment was feasible for these spectra, we were interested in the study of the reaction products created by irradiation of the carbonyl iron silyl complex Cp(CO)2FeCH2SiH3. Although the calculated characteristic vibrational modes of the metal ligand unit for the various photoproducts are significantly different in constitution, they are very similar in wavenumbers, which did not simplify their identification. However, the theoretical results have been found to be consistent with the earlier experimental results. Finally, the last part of this thesis has been devoted to the (2-Py)2E- anions which exhibit a high selectivity toward metal-coordination. All di(2-pyridyl) amides and -phosphides which were synthesized by D-4, coordinate the R2Al+ fragment via both ring nitrogen atoms. This already suggests that the charge density in the anions is coupled into the rings and accumulated at the ring nitrogen atoms, but the Lewis basicity of the central nitrogen atom in Et2Al(2-Py)2N is still high enough to coordinate a second equivalent AlEt3 to form the Lewis acid base adduct Et2Al(2-Py)2NAlEt3. Due to the higher electronegativity of the central nitrogen atom in Me2Al(2-Py)2N, Et2Al(2-Py)2N and Et2Al(2-Py)2NAlEt3, compared to the bridging two coordinated phosphorus atom in Me2Al(2-Py)2P and Et2Al(2-Py)2P, the di(2-pyridyl)amide is the hardest Lewis base. In the phosphides merely all charge density couples into the rings leaving the central phosphorus atom only attractive for soft metals. These results were confirmed by using DFT and MP2 calculations. Moreover, a similar behaviour has been observed and described for the benzothiazolyl complex [Me2Al{Py(Bth)P}], where complementary investigations are to be continued. The DFT calculations carried out on the model compounds analysed in these studies supply very accurate wavenumbers and molecular geometries, these being in excellent agreement with the experimental results obtained from the corresponding isolated complexes.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} } @phdthesis{Liu2011, author = {Liu, Wenlan}, title = {Exciton Coupling in Valence and Core Excited Aggregates of pi-Conjugated Molecules}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56169}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Im Rahmen dieser Arbeit werden theoretische Modelle zur Beschreibung von Valenz- und Rumpf-angeregten elektronischen Zust{\"a}nden diskutiert. Im Fall der Valenz-Anregungen wurden time-dependend Hartree-Fock (TD-HF) und timedependent Dichtefunktionaltheorie (TD-DFT)Methoden mit verschiedenen Funktionalen f{\"u}r ein Perylenbisimid (PBI) System validiert. Eine einfache Analyse der Charakt{\"a}re der angeregten Zust{\"a}nde wurde vorgeschlagen, die auf den berechneten {\"U}bergangsdipolmomenten basiert. Dieser Ansatz ist allerdings auf Zust{\"a}nde beschr{\"a}nkt, die ein signifikantes {\"U}bergangsdipolmoment aufweisen. Deshalb wurde eine allgemeinere und fundiertere Methode entwickelt, die auf einer Analyse der berechneten CISWellenfunktion basiert. Dar{\"u}berhinaus wurde ein literaturbekannter Model-Hamiltonoperator Ansatz von einem lokalisierten Molek{\"u}lorbitalbild (MO) abgeleitet, das aus der generelleren Analyse-Methode resultiert. Auf diesem Weg ist ein Zugang zu diabatischen angeregten Zust{\"a}nden und korrespondierenden Kopplungsparametern auf der Basis von ab initio Rechnungen gegeben. F{\"u}r rumpfangeregte elektronische Zust{\"a}nde wurden drei Methoden f{\"u}r C 1s-angeregte und ionisierte Zust{\"a}nde verschiedener kleiner Molek{\"u}le validiert. Dar{\"u}berhinaus wurde die Basissatzabh{\"a}ngigkeit dieser Zust{\"a}nde untersucht. Anhand der Resultate wurde die frozen core N{\"a}herung ausgew{\"a}hlt um rumpfangeregte Zust{\"a}nde von Naphthalintetracarbons{\"a}uredianhydrid (NTCDA) zu berechnen. Um experimentelle Ergebnisse zu erkl{\"a}ren, wurde ein Algorithmus entwicklet, der die Exzitonenkopplungsparameter im Fall von nicht-orthogonalen MOs berechnet.}, subject = {Exziton}, language = {en} } @phdthesis{Kacprzak2006, author = {Kacprzak, Sylwia}, title = {Investigations of the EPR parameters of bioradicals by density functional methods}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Die quantenchemische Modellierung von Parametern der elektronenparamagnetischen Resonanz (EPR) stellt, in Kombination mit Daten aus modernen Hochfeld-/Hochfrequenz (HF) EPR-Techniken, eine {\"u}beraus wichtige analytische Methode dar, um Einblicke in die Radikal-Protein-Wechselwirkung zu gewinnen. Diese Wechselwirkung bestimmt zu einem großen Teil die Abl{\"a}ufe radikalischer biochemischer Prozesse. In dieser Arbeit untersuchten wir in einer Reihe von Dichtefunktionaltheorie (DFT)-Studien die EPR-Parameter diverser biologisch wichtiger Radikale sowie mehrerer durch Radikal-Protein-Wechselwirkungen im Photosystem I inspirierter Modellsysteme. Wir demonstrierten die Genauigkeit sowie die Kapazit{\"a}t unserer Methode, um Einblicke in die in vivo Umgebung und Reaktivit{\"a}t von Bioradikalen zu erhalten. Unser DFT-Ansatz zur Berechnung elektronischer g-Tensoren wurde auf Semichinonradikalanionen in verschiedenen Proteinumgebungen photosynthetischer Reaktionszentren angewandt. Supermolekulare Modelle wurden, basierend auf einer Kombination aus kristallographischen und quantenchemischen Strukturdaten, f{\"u}r die aktiven Zentren QA und QB bakterieller Reaktionszentren, f{\"u}r A1 des Photosystems I sowie f{\"u}r Ubisemichinon in gefrorenem 2-Propanol erstellt. Nach der Skalierung der berechneten \&\#8710;gx Komponenten um 0.92 stimmen die auf gradienten-korrigertem DFT-Niveau mit den bestenverf{\"u}gbaren Spin-Bahn-Operatoren berechneten Komponenten \&\#8710;gx sowie \&\#8710;gy mit den Hochfeld-EPR-Referenzdaten innerhalb der experimentellen Genauigkeit in allen vier untersuchten Systemen {\"u}berein. Der Einfluss verschiedener nichtkovalenter Wechselwirkungen zwischen dem Semichinon und dem Protein wurde durch das sukzessive Verkleinern der Modellsysteme studiert. Dabei wurde festgestellt, dass der Effekt der Wasserstoffbr{\"u}ckenbindung zu den beiden Carbonyl-Sauerstoff-Atomen der Semichinone wegen der kompensierenden Spinpolarisationseffekte nicht additiv ist. Der Effekt der Tryptophan-Semichinon \&\#61552;-Stapelung hat auf QA und A1 unterschiedliche Auswirkungen. Dies konnte auf die andersartige Ausrichtung der wechselwirkenden Fragmente sowie auf die unterschiedliche Spinpolarisation zur{\"u}ckgef{\"u}hrt werden. Im n{\"a}chsten Teil dieser Arbeit wurden Semichinone der so genannten „hoch-affinen" Bindungsstelle der Chinoloxidase (QH) untersucht. Vor kurzem durchgef{\"u}hrte Multifrequenz-EPR-Studien der QH der Chinoloxidase legten asymmetrische Wasserstoffbr{\"u}ckenbindungen zum Semichinonradikalanion nahe. Eine einzelne Wasserstoffbr{\"u}ckenbindung zum O1 des Carbonyls war ein weiteres vorgeschlagenes Strukturmerkmal, das allerdings im Gegensatz zu fr{\"u}heren experimentellen Hinweisen st{\"u}nde. Wir haben DFT Berechnungen der EPR-Parameter (g-Tensoren, 13C-, 1H- und 17O-Hyperfeinkopplungstensoren) einer großen Anzahl von supermolekularen Modellkomplexen durchgef{\"u}hrt, um detaillierte Einblicke in die Zusammenh{\"a}nge zwischen Struktur, Umgebung und EPR-Parametern von Ubisemichinon-Radikalanionen zu gewinnen. Ein Bindungsmodell, das nur eine einzige Wasserstoffbr{\"u}cke ber{\"u}cksichtigt, ist demnach weder in der Lage, die experimentell beobachteten niedrigen gx-Komponenten der g-Tensoren, noch die beobachtete große Asymmetrie von 13C-Carbonyl HFC-Tensoren zu erkl{\"a}ren. Basierend auf einem detaillierten Vergleich zwischen Rechnung und Experiment wurde ein Modell mit zwei Wasserstoffbr{\"u}ckenbindungen zu O1 und einer Wasserstoffbr{\"u}ckenbindung zu O4 f{\"u}r QH vorgeschlagen. Ein Modell mit jeweils einer Wasserstoffbr{\"u}ckenbindung mehr kann jedoch ebenfalls nicht v{\"o}llig ausgeschlossen werden. Zus{\"a}tzlich wurden weitere erkannte Zusammenh{\"a}nge zwischen EPR-Parametern und Wasserstoffbr{\"u}ckenbindungen von Ubisemichinonen in Proteinen diskutiert. Theoretische Untersuchungen bez{\"u}glich des Mechanismus des Elektronentransfers im Photosystem I gaben den Anstoß, relativ kleine rotierende molekulare Motoren, bestehend aus intramolekular verbundenen Dyaden, welche eine Chinoneinheit sowie eine Pyrrol- oder Indoleinheit verkn{\"u}pfen, zu modellieren. Die Berechnungen zeigten, dass f{\"u}r einige Systeme, abh{\"a}ngig von der L{\"a}nge und den Ankn{\"u}pfungspunkten der verbundenen Ketten, eine Reduktion des Chinons zum Semichinonradikalanion oder Chinolatdianion mit einer reversiblen intramolekularen Neuorientierung weg von einer \&\#61552;-Stapelung und hin zu einer T-Stapelung auftritt. Durch die Umstrukturierung wird eine Wasserstoffbr{\"u}ckenbindung der Pyrrol- oder Indol-N-H-Funktion zum Semichinon- oder Chinolat-\&\#61552;-Systems nach der Reduktion ausgebildet. In einigen Systemen bilden sich jedoch Wasserstoffbr{\"u}ckenbindungen zum Semichinon- oder Chinolat-Sauerstoffatom aus, die gegen{\"u}ber der T-Stapelung bevorzugt werden. Die intramolekularen Wechselwirkungen ver{\"a}ndern das Redoxpotential des Chinons. Der elektronische g-Tensor, welcher f{\"u}r die Semichinone berechnet wurde, beweist eindeutig das Vorhandensein dieser Wasserstoffbr{\"u}ckenbindung zum Semichinon. g-Tensoren stellen somit eine geeignete Kenngr{\"o}ße in der EPR Spektroskopie dar, um strittige Strukturen aufzukl{\"a}ren. Wir halten auch einen intramolekularer Protonentransfer im dianionischen Zustand f{\"u}r m{\"o}glich. Im Gegensatz zu Semichinonen welche paramagnetische Zust{\"a}nde von Enzymen-Cofaktoren darstellen sind Glyclradikale echte Proteinradikale. Als Schritt zum tiefer gehenden Verst{\"a}ndnis von EPR-Parametern des Glycylradikals in Proteinen wurden die Hyperfeinkopplungstensoren und insbesondere der g-Tensor des N-Acetylglycyls durch systematische hochgenaue quantenchemischen Berechnungen an diversen geeigneten Modellsystemen untersucht. Die quantitative Berechnung von g-Tensoren f{\"u}r solche Glycyl-{\"a}hnlichen Radikale ist eine enorme Herausforderung, insbesondere wegen der sehr kleinen g-Anisotropie. Diese ist zudem mit einer nichtsymmetrischen delokalisierten Spindichteverteilung auf verschiedene Atome des Molek{\"u}ls verbunden, die mit vergleichbaren Spinbahneffekten zum g-Tensor beitragen. Die Wahl eines geeigneten Eichursprungs des magnetischen Vektorpotentials und geeigneter Spin-Bahn-Operatoren, gestaltete sich weitaus anspruchsvoller als in vorausgegangen Arbeiten zu g-Tensoren organischer Radikale. Umgebungseffekte, die durch supermolekulare Wasserstoffbr{\"u}ckenbindungs-Modelle ber{\"u}cksichtigt wurden, stellen sich hingegen als nicht so schwerwiegend heraus, zum Teil durch die gegenseitige Kompensierung des Einflusses von intramolekularen und intermolekularen Wasserstoffbr{\"u}ckenbindungen. Den gr{\"o}ßten Einfluss auf den g-Tensor {\"u}bt die Konformation des Radikals aus. Die angewendete DFT Methode {\"u}bersch{\"a}tzt systematisch sowohl die \&\#8710;gx als auch die \&\#8710;gy Komponente des g-Tensors. Dieses Ergebnis ist wichtig f{\"u}r Untersuchungen von Protein-Glycyl-Radikalen (siehe weiter unten). Die 1H\&\#61537; und 13C\&\#61537; Hyperfeinkopplungen h{\"a}ngen nur wenig von den gew{\"a}hlten supermolekularen Modellen ab und scheinen weniger empfindlich gegen{\"u}ber der genauen Struktur und Umgebung des Molek{\"u}ls zu sein. Die Anzahl der bekannten Enzyme, die als funktionelle Gruppe ein Glycyl-Radikal besitzen, wird immer gr{\"o}ßer. Wir f{\"u}hrten in dieser Arbeit eine systematische quantenchemische Studie zur Spindichteverteilung, elektronischem g-Tensor und Hyperfeinkopplungskonstanten diverser Modelle von Protein-gebundenen Glycylradikalen durch. Wie schon bei N-Acetylglycyl gesehen (siehe oben) stellt auch hier die geringe g-Anisotropie dieses delokalisierten, asymmetrischen Systems selbst f{\"u}r moderne Rechenmethoden eine betr{\"a}chtliche Herausforderung dar. Dies betrifft zum einen die Qualit{\"a}t der Strukturoptimierung, zum anderen die Wahl des Spin-Bahn-Operators und des Eichursprungs des magnetischen Vektorpotentials. Umgebungseffekte aufgrund der Ausbildung von Wasserstoffbr{\"u}ckenbindungen h{\"a}ngen in komplizierter Weise von den verschiedenen intramolekularen Wasserstoffbr{\"u}ckenbindungen verschiedener Konformationen des Radikals ab. Die jeweilige Konformation hat insgesamt gesehen die gr{\"o}ßte Auswirkung auf den berechneten g-Tensor (jedoch weniger auf den Hyperfeinkopplungstensor). Wir diskutierten dies im Zusammenhang verschiedener g-Tensoren, welche vor kurzem durch Hochfeld-EPR Messungen f{\"u}r drei verschiedene Enzyme erhalten wurden. Basierend auf den Resultaten der Kalibrierungsstudie an N-Acetylgylcyl, schlagen wir vor, dass das Glycylradikal, welches f{\"u}r die E.coli anaerobische Ribonucleotid Reductase (RNR) beobachtet wurde, eine gestreckte Konformation besitzt, die sich von derjenigen der entsprechenden Radikale der Pyruvat Format-Lyase (PFL) oder Benzylsuccinatsynthase (BSS) unterscheidet.}, subject = {Biologisches System}, language = {en} } @phdthesis{Issing2011, author = {Issing, Sven}, title = {Correlation between Lattice Dynamics and Magnetism in the Multiferroic Manganites}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66283}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In this thesis a systematic analysis of the correlation effects between lattice dynamics and magnetism in the Multiferroic Manganites RMnO3 with Pnma structure was conducted. For this task, Raman and FT-IR Spectroscopy were employed for an investigation of all optically accessible lattice vibrations, i.e. phonons. To study the correlation effects as well as their specific connections to symmetry and compositional properties of the Multiferroic Manganites, the polarisation and temperature dependence of the phonons were considered explicitly. In combination with lattice dynamical calculations based on Density Functional Theory, two coupling effects - Spin-Phonon Coupling and Electromagnon-Phonon Coupling - were systematically analysed.}, subject = {FT-IR-Spektroskopie}, language = {en} } @phdthesis{HasenstabRiedel2006, author = {Hasenstab-Riedel, Sebastian}, title = {The Highest Oxidation States of the 5d Transition Metals : a Quantum-Chemical Study}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19402}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {The theoretical work presented in this thesis is concerned with the highest possible oxidation states of the 5d transition metal row. Based on a validation study of several DFT functionals against accurate coupled-cluster CCSD(T) methods we will present calculations on a series of new high oxidation state HgIV species. Quantum-chemical calculations have also been applied to various fluoro complexes of gold in oxidation states +V through +VII to evaluate the previously claimed existence of AuF7. The calculations indicate clearly that the oxidation state (+V), e.g., in [AuF5]2, remains the highest well-established gold oxidation state. Further calculations on iridium in oxidation state (+VII) show that IrF7 and IrOF5 are viable synthetic targets, whereas higher oxidation states of iridium appear to be unlikely. Structures and stabilities of several osmium fluorides and oxyfluorides were also studied in this thesis. It is shown that homoleptic fluorides all the way up to OsF8 may exist. Combining the results of the most accurate quantum-chemical predictions of this thesis and of the most reliable experimental studies, we observe a revised trend of the highest oxidation states of the 5d transition metal row. From lanthanum (+III) to osmium (+VIII), there is a linear increase of the highest oxidation states with increasing atomic number. Thereafter, we observe a linear descent from osmium (+VIII) to mercury (+IV). We will also present a short outlook to the transition metals of the 3d and 4d row and their highest reachable oxidation states.}, subject = {Oxidationszahl}, language = {en} } @phdthesis{Eck2024, author = {Eck, Philipp}, title = {Symmetry Breaking and Spin-Orbit Interaction on the Triangular Lattice}, doi = {10.25972/OPUS-35918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Since the prediction of the quantum spin Hall effect in graphene by Kane and Mele, \(Z_2\) topology in hexagonal monolayers is indissociably linked to high-symmetric honeycomb lattices. This thesis breaks with this paradigm by focusing on topological phases in the fundamental two-dimensional hexagonal crystal, the triangular lattice. In contrast to Kane-Mele-type systems, electrons on the triangular lattice profit from a sizable, since local, spin-orbit coupling (SOC) and feature a non-trivial ground state only in the presence of inversion symmetry breaking. This tends to displace the valence charge form the atomic position. Therefore, all non-trivial phases are real-space obstructed. Inspired by the contemporary conception of topological classification of electronic systems, a comprehensive lattice and band symmetry analysis of insulating phases of a \(p\)-shell on the triangular lattice is presented. This reveals not only the mechanism at the origin of band topology, the competition of SOC and symmetry breaking, but sheds also light on the electric polarization arising from a displacement of the valence charge centers from the nuclei, i. e., real-space obstruction. In particular, the competition of SOC versus horizontal and vertical reflection symmetry breaking gives rise to four topologically distinct insulating phases: two kinds of quantum spin Hall insulators (QSHI), an atomic insulator and a real-space obstructed higher-order topological insulator. The theoretical analysis is complemented with state-of-the-art first principles calculations and experiments on trigonal monolayer adsorbate systems. This comprises the recently discovered triangular QSHI indenene, formed by In atoms, and focuses on its topological classification and real-space obstruction. The analysis reveals Kane-Mele-type valence bands which profit from the atomic SOC of the triangular lattice. The realization of a HOTI is proposed by reducing SOC by considering lighter adsorbates. Further the orbital Rashba effect is analyzed in AgTe, a consequence of mirror symmetry breaking, the formation of local angular momentum polarization and SOC. As an outlook beyond topology, the Fermi surface and electronic susceptibility of Group V adsorbates on silicon carbide are investigated. In summary, this thesis elucidates the interplay of symmetry breaking and SOC on the triangular lattice, which can promote non-trivial insulating phase.}, subject = {Topologie}, language = {en} } @phdthesis{Asher2006, author = {Asher, James}, title = {Inclusion of Dynamical Effects in Calculation of EPR Parameters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24078}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {This thesis describes the inclusion of dynamical effects in the theoretical calculation of Electron Paramagnetic Resonance (EPR) spectroscopic parameters. The studies were performed using Density Functional Theory (DFT) methodology and a perturbation-theoretical approach to g-tensor calculations. Hydrogen atoms trapped in octasilasesquioxane cages display unexpectly high, positive g-values. Computational simulation of these systems successfully reproduced the positive g-values and found them to arise from spin-orbit coupling around the oxygen nuclei. Dynamical effects were estimated by calculating the potential well in which the hydrogen atom moves. Semiquinone radical anions are important bioradicals that play a role in photosynthesis and respiration. The simplest and most prototypical, benzosemiquinone anion, was simulated both in the gas phase and in aqueous solution by Car-Parrinello Molecular Dynamics (CPMD). The neutral benzoquinone was also simulated for comparison. The solvation environments of both the anionic and neutral molecules were analysed and compared. EPR parameters were calculated for the semiquinone, providing the first example of full inclusion of dynamic effects in g-tensor calculation. The effects of different solvation interactions on the g-tensor and hyperfine interactions were extensively examined. Additionally, static calculations (i.e., calculations not incorporating any dynamical effects) were performed. Comparison between these (and prior computational studies) and the dynamical system allowed an assessment of the effects of dynamics on solvation and EPR parameters. Ubisemiquinone radical anion, one of the most widely-occurring semiquinone radicals, was simulated in the aqueous phase using CPMD. The solvation environment was analysed and EPR parameters were calculated. The motion of the side-chain, and its effects on solvation and EPR parameters, were examined.}, subject = {Dichtefunktionalformalismus}, language = {en} }