@phdthesis{Zovko2013, author = {Zovko, Josip}, title = {Die E3-Ubiquitinligase HectD1 reguliert die Stabilit{\"a}t des antiapoptotischen Bcl-2-Familienmitglieds A1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87922}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Bcl-2-Familienmitglieder A1 und sein humanes Homolog Bfl-1 gew{\"a}hrleisten das {\"U}berleben der Zelle. Gleichzeitig tr{\"a}gt eine Dysregulation der Expression von A1/ Bfl-1 zur Krebsentstehung bei. Die Stabilit{\"a}t von A1/ Bfl-1 wird durch deren Ubiquitinylierung sowie die anschließende proteosomale Degradation gesteuert. Mit Hilfe eines Yeast-Two-Hybrid-Screens wurde die E3-Ubiquitinligase HectD1 als potentieller Interaktionspartner von A1/ Bfl-1 identifiziert. Die Interaktion von A1 und HectD1 des Yeast-Two-Hybrid-Screens konnte in S{\"a}ugerzellen best{\"a}tigt werden. Desweiteren konnte gezeigt werden, dass lediglich 87 Aminos{\"a}uren f{\"u}r eine Interaktion von HectD1 und A1 n{\"o}tig sind. Da membrangebundenes HectD1 zu einer Translokation von zytosolischem A1 an die Zellmembran f{\"u}hrt, kann man davon ausgehen, dass beide Proteine auch in vivo miteinander interagieren. Eine dominant negative HectD1-Mutante schließlich beeinflusst die Ubiqutinylierung von A1 und f{\"u}hrt somit zu dessen Stabilisierung. Diese Daten legen nahe, dass HectD1 ein wichtiger negativer Regulator von A1/ Bfl-1 ist und dass HectD1 f{\"u}r die Regulierung der A1/ Bfl-1-Proteinmenge in (Krebs)zellen sehr wichtig ist.}, subject = {Zelltod}, language = {de} } @phdthesis{Stelzner2020, author = {Stelzner, Kathrin}, title = {Identification of factors involved in Staphylococcus aureus- induced host cell death}, doi = {10.25972/OPUS-18899}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188991}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Staphylococcus aureus is a Gram-positive commensal bacterium, that asymptomatically colonizes human skin and mucosal surfaces. Upon opportune conditions, such as immunodeficiency or breached barriers of the host, it can cause a plethora of infections ranging from local, superficial infections to life-threatening diseases. Despite being regarded as an extracellular pathogen, S. aureus can invade and survive within non-phagocytic and phagocytic cells. Eventually, the pathogen escapes from the host cell resulting in killing of the host cell, which is associated with tissue destruction and spread of infection. However, the exact molecular mechanisms underlying S. aureus-induced host cell death remain to be elucidated. In the present work, a genome-wide haploid genetic screen was performed to identify host cell genes crucial for S. aureus intracellular cytotoxicity. A mutant library of the haploid cell line HAP1 was infected with the pathogen and cells surviving the infection were selected. Twelve genes were identified, which were significantly enriched when compared to an infection with a non-cytotoxic S. aureus strain. Additionally, characteristics of regulated cell death pathways and the role of Ca2+ signaling in S. aureus-infected cells were investigated. Live cell imaging of Ca2+ reporter cell lines was used to analyze single cells. S. aureus-induced host cell death exhibited morphological features of apoptosis and activation of caspases was detected. Cellular H2O2 levels were elevated during S. aureus intracellular infection. Further, intracellular S. aureus provoked cytosolic Ca2+ overload in epithelial cells. This resulted from Ca2+ release from endoplasmic reticulum and Ca2+ influx via the plasma membrane and led to mitochondrial Ca2+ overload. The final step of S. aureus-induced cell death was plasma membrane permeabilization, a typical feature of necrotic cell death. In order to identify bacterial virulence factors implicated in S. aureus-induced host cell killing, the cytotoxicity of selected mutants was investigated. Intracellular S. aureus employs the bacterial cysteine protease staphopain A to activate an apoptosis-like cell death characterized by cell contraction and membrane bleb formation. Phagosomal escape represents a prerequisite staphopain A-induced cell death, whereas bacterial intracellular replication is dispensable. Moreover, staphopain A contributed to efficient colonization of the lung in a murine pneumonia model. In conclusion, this work identified at least two independent cell death pathways activated by intracellular S. aureus. While initially staphopain A mediates S. aureus-induced host cell killing, cytosolic Ca2+-overload follows later and leads to the final demise of the host cell.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Grosz2015, author = {Grosz, Magdalena Urszula}, title = {Identification of phagosomal escape relevant factors in Staphylococcus aureus infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121981}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Staphylococcus aureus is a facultative Gram-positive human pathogen which can cause different severe infections. Staphylococci are phagocytosed by professional and non-professional phagocytes; they are strongly cytotoxic against eukaryotic cells and have been proposed to play a role in immune evasion by spreading within migrating phagocytes. This study investigated the post invasive events upon S. aureus infection. Strains which are able to escape the phagosome were identified and the responsible toxins were determined. Thereby innovative insights into host pathogen interaction were obtained. A novel class of small amphipathic peptides with strong surfactant-like properties, the phenol soluble modulins, particularly PSMα as well as the leukocidin LukAB, are involved in phagosomal escape of the clinical S. aureus strains LAC, MW2 and 6850 in non-professional and professional phagocytes. Whereas, PSMβ, δ-toxin, α-toxin, β-toxin or phosphatidyl inositol-dependent phospholipase C did not affect phagosomal escape. By blocking the bacterial DNA-dependent RNA polymerase with rifampicin phagosomal escape is determined to start approximately 2.5 hours post infection. Phagosomal escape further was required for intracellular replication of S. aureus. Strains which are not able to escape cannot replicate in the acidic vacuole, whereas, the host cytoplasm offers a rich milieu for bacterial replication. Additionally, phagosomal escape, with intracellular bacterial replication induces the subsequent host cell death. This could be confirmed by an infection assay including S. aureus knockout mutants in psmα or lukAB which were significantly less cytotoxic, compared with those infected with escape-positive wild type strains. Further, this study showed that phagosomal escape is not only mediated by bacterial toxins. Since, the phagocyte-specific cognate receptors for both escape relevant toxins, FPR2 (PSMα receptor) and CD11b (LukAB receptor) are produced in epithelial and endothelial cells only after infection with S. aureus in a calcium dependent fashion. The knockdown of both receptors using siRNA prevents S. aureus to escape the phagosome. Furthermore, blocking intracellular calcium release with the inositol trisphosphate receptor (IP3R) inhibitor 2-APB prohibits upregulation of fpr2 and cd11b and subsequently phagosomal escape of S. aureus. To conclude, the current study clarifies that phagosomal escape and host cell death are interplay of both, bacterial toxins and host cell factors. Staphylococcus aureus ist ein fakultativ Gram-positives Humanpathogen, dass verschiedene schwerwiegende Infektionen verursachen kann. Staphylokokken werden von professionellen und nicht-professionellen Phagozyten (Fresszellen) zu gleich aufgenommen. Desweitern sind sie stark zytotoxisch f{\"u}r eukaryotische Zellen. Außerdem wird vermutet, dass sie sich mittels migrierender Phagozyten dem angeborenen Immunsystem entziehen k{\"o}nnen. In dieser Studie werden die post-invasiven Ereignisse w{\"a}hrend einer Staphylokokken Infektion untersucht. Im Detail wurden St{\"a}mme identifiziert die aus den Phagosomen entkommen k{\"o}nnen und die daf{\"u}r verantwortlichen Toxine. Im Zuge dessen wurden neue Erkenntnisse der Interaktion zwischen Bakterien und Wirtszellen gewonnen. Eine neue Klasse von kleinen amphiphatischen Peptiden mit starken grenzfl{\"a}chenaktiven Eigenschaften (Surfactant), die sogenannten Phenol soluble modulins (PSMs) im Besonderen PSMα sowie das Leukozidin LukAB, sind am phagosomalen Ausbruch der klinisch relevanten S. aureus St{\"a}mmen LAC, MW2 und 6850 in nicht professionellen und professionellen Phagozyten involviert. Hingegen, sind PSMβ, δ-toxin, α-toxin, β-toxin oder Phosphatidylinositol abh{\"a}ngige Phospholipase C nicht am phagosomalen Ausbruch beteiligt. Durch die Hemmung der bakteriellen DNA-abh{\"a}ngigen RNA Polymerase mit Rifampicin wurde der Zeitpunkt f{\"u}r den Ausbruch auf etwa 2,5 Stunden nach der Infektion eingegrenzt. Der phagosomale Ausbruch ist weiterhin f{\"u}r die intrazellul{\"a}re Replikation von S. aureus notwendig. W{\"a}hrend St{\"a}mme, die nicht ausbrechen k{\"o}nnen in der anges{\"a}uerten Vakuole nicht replizieren k{\"o}nnen, bietet das Zytoplasma ein reichhaltiges Milieu f{\"u}r die Vermehrung. Zudem wird der Pathogen induzierte Zelltod erst nach dem phagosomalen Ausbruch und mit anschließender Vermehrung erm{\"o}glicht. Nachgewiesen wurde dies mittels psmα und lukAB defizienten Mutanten welche signifikant weniger zytotoxisch waren als der Wildtyp Stamm. Diese Studie zeigt dar{\"u}ber hinaus, dass der phagosomale Ausbruch nicht nur durch bakterielle Toxine vermittelt wird. Sondern, dass die Phagozyten-spezifischen Rezeptoren f{\"u}r beide relevanten Toxine, FPR2 (PSMα Rezeptor) und CD11b (LukAB Rezeptor), in Epithel- und Endothelzellen nach Infektion mit S. aureus calciumabh{\"a}ngig produziert werden und f{\"u}r den Ausbruch notwendig sind. Der knockdown beider Rezeptoren mittels siRNA verhindert den Ausbruch. Wird der intrazellul{\"a}re Calciumstrom mittels des Inositoltrisphosphat Rezeptor (IP3R) Inhibitor 2-APB blockiert k{\"o}nnen die Gene fpr2 und cd11b nicht hochreguliert werden und der Ausbruch wird ebenfalls verhindert. Folglich zeigt diese Studie, dass der phagosomale Ausbruch und Pathogen induzierte Zelltod sowohl durch bakterielle Toxine als auch Wirtsfaktoren vermittelt wird.}, subject = {Phagosom}, language = {en} } @phdthesis{Loske2000, author = {Loske, Claudia}, title = {Metabolische Ver{\"a}nderungen und Zelltod in neuralen Zellen durch "Advanced Glycation Endproducts"}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1707}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Advanced Glycation Endproducts (AGEs) entstehen aus nicht-enzymatisch glykierten Proteinen. In einer Folge von Dehydratations-, Kondensations- und Oxidationsschritten entsteht ein heterogenes Gemisch aus farbigen, fluoreszierenden Verbindungen. AGE-modifizierte Proteine sind unl{\"o}slich und proteaseresistent, bei ihrer Bildung entstehen freie Radikale und andere reaktive Intermediate. Von der AGE-Bildung betroffen sind vor allem langlebige Proteine mit geringem Umsatz wie Kollagen und Kristallin aber auch pathologische Proteinablagerungen, z.B. in der Alzheimer´schen Demenz (AD). Die Akkumulation von AGEs spielt in der Pathogenese von Komplikationen des Diabetes und der H{\"a}modialyse eine Rolle, f{\"u}r die AD wird eine Beteiligung von AGEs am Krankheitsverlauf diskutiert. Die Alzheimer´sche Demenz ist gekennzeichnet durch den histologischen Nachweis seniler Plaques und neurofibrill{\"a}rer B{\"u}ndel in Hirngewebe der Patienten. Auf Ebene des Stoffwechsels kommt es zu einer Verringerung des zerebralen Glukoseumsatzes, es finden sich Marker sowohl f{\"u}r eine Akutphasenreaktion als auch f{\"u}r oxidativen Stress. In dieser Arbeit wurde gezeigt, dass die AGE-Bildung in vitro die Aggregation von ßA4, dem Hauptbestandteil der senilen Plaques in der AD, beschleunigt. Der geschwindigkeits-bestimmende Schritt ist dabei die Glykierung des ßA4-Monomers. Durch Zugabe von {\"U}bergangsmetall-ionen kann die Vernetzung weiter beschleunigt werden. Dies deutet darauf hin, dass AGEs zur Plaquebildung in der AD beitragen, redox-aktive Eisenionen sind in der AD mit den Plaques assoziiert. Mit Hilfe von Metallchelatoren, Antioxidantien oder mit Substanzen, welche die zur Vernetzung notwendigen Aminogruppen abblocken, l{\"a}sst sich die Aggregation von ßA4 verlangsamen oder verhindern. AGEs wirken zytotoxisch auf BHK 21 Fibroblasten und humane SH-SY5Y Neuroblastoma Zellen. Die Toxizit{\"a}t unterschiedlicher Modell-AGEs ist abh{\"a}ngig von verschiedenen Faktoren, u.a. von dem zur Herstellung verwendeten Protein und vom Zucker. Die LD50 der Modell-AGEs korreliert mit dem AGE-Gehalt und der Radikalproduktion der Pr{\"a}parationen in vitro. Die AGE-Toxizit{\"a}t ist haupts{\"a}chlich radikalvermittelt. Oxidativer Stress l{\"a}sst sich in AGE-behandelten Zellen durch die Bildung intrazellul{\"a}rer Lipidperoxidationsprodukte nachweisen. Auf Ebene der Signaltransduktion konnte die Aktivierung des Transkriptions-faktors NfkB als Zeichen der Stressabwehr nachgewiesen werden. Die Gabe von Antioxidantien vor oder gleichzeitig mit den AGEs verringerte den Zelltod. Auch durch das Blockieren des Rezeptors f{\"u}r AGEs (RAGE) mit spezifischen Antik{\"o}rpern konnte die Zahl {\"u}berlebender Zellen gesteigert werden. Durch AGEs ausgel{\"o}ster Stress f{\"u}hrt in Neuroblastoma Zellen bereits in Konzentrationen unterhalb der LD50 zu St{\"o}rungen im Redoxstatus, es kommt zur Depletion von GSH und zu Verschiebungen im Verh{\"a}ltnis GSH/GSSG. Damit einher gehen Ver{\"a}nderungen im Energiestoffwechsel der Zelle, nach anf{\"a}nglich erh{\"o}hter Glukoseaufnahme kommt es im weiteren Verlauf der Inkubation zu einer Verringerung der Aufnahme von Glukose aus dem Medium, gefolgt von einer Zunahme der Laktataussch{\"u}ttung. Ausserdem wurde eine Depletion von ATP um bis zu 50 Prozent nachgewiesen. Antioxidantien k{\"o}nnen die St{\"o}rungen im Metabolismus der Zellen verhindern oder abschw{\"a}chen, die meisten der getesteten Substanzen konnten Redoxstatus und ATP-Gehalt der Zellen zu normalisieren. Obwohl sich in AGE-gestressten Zellkulturen durch Annexin-Fluorescein-Markierung ein geringf{\"u}gig erh{\"o}hter Prozentsatz apoptotischer Zellen nachweisen ließ und AGEs auch die Freisetzung von Cytochrom c ins Zytoplasma induzieren, verl{\"a}uft der durch AGEs ausgel{\"o}ste Zelltod verl{\"a}uft offenbar insgesamt nekrotisch. Sowohl durch Radikalproduktion als auch {\"u}ber rezeptorvermittelte Signalwege verursachen AGEs oxidativen Stress und induzieren Ver{\"a}nderungen im Metabolismus der Zelle. Dies f{\"u}hrt u. a. dazu, dass f{\"u}r die antioxidativen Schutzmechanismen der Zelle nicht mehr gen{\"u}gend Energie zur Verf{\"u}gung steht. AGE-Stress tr{\"a}gt damit in einer selbstverst{\"a}rkenden Reaktionskaskade zur Neurodegeneration bei und kann so an der Pathogenese der AD beteiligt sein. Antioxidantien und auch AGE-Inhibitoren k{\"o}nnten einen interessanten Ansatz zur Entwicklung alternativer Therapien in der AD darstellen.}, subject = {Alzheimer-Krankheit}, language = {de} }