@article{KlaesnerBuchmannGemptetal.2015, author = {Kl{\"a}sner, Benjamin and Buchmann, Niels and Gempt, Jens and Ringel, Florian and Lapa, Constantin and Krause, Bernd Joachim}, title = {Early [\(^{18}\)F]FET-PET in Gliomas after Surgical Resection: Comparison with MRI and Histopathology}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0141153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139549}, pages = {e0141153}, year = {2015}, abstract = {Background The precise definition of the post-operative resection status in high-grade gliomas (HGG) is crucial for further management. We aimed to assess the feasibility of assessment of the resection status with early post-operative positron emission tomography (PET) using [\(^{18}\)F]O-(2-[\(^{18}\)F]-fluoroethyl)-L-tyrosine ([\(^{18}\)F]FET). Methods 25 patients with the suspicion of primary HGG were enrolled. All patients underwent preoperative [\(^{18}\)F]FET-PET and magnetic resonance imaging (MRI). Intra-operatively, resection status was assessed using 5-aminolevulinic acid (5-ALA). Imaging was repeated within 72h after neurosurgery. Post-operative [\(^{18}\)F]FET-PET was compared with MRI, intra-operative assessment and clinical follow-up. Results [\(^{18}\)F]FET-PET, MRI and intra-operative assessment consistently revealed complete resection in 12/25 (48\%) patients and incomplete resection in 6/25 cases (24\%). In 7 patients, PET revealed discordant findings. One patient was re-resected. 3/7 experienced tumor recurrence, 3/7 died shortly after brain surgery. Conclusion Early assessment of the resection status in HGG with [\(^{18}\)F]FET-PET seems to be feasible.}, language = {en} } @article{WohllebenScherzadGuettleretal.2015, author = {Wohlleben, Gisela and Scherzad, Agmal and G{\"u}ttler, Antje and Vordermark, Dirk and Kuger, Sebastian and Flentje, Michael and Polat, Buelent}, title = {Influence of hypoxia and irradiation on osteopontin expression in head and neck cancer and glioblastoma cell lines}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {167}, doi = {10.1186/s13014-015-0473-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125746}, year = {2015}, abstract = {Background Tumor hypoxia is a known risk factor for reduced response to radiotherapy. The evaluation of noninvasive methods for the detection of hypoxia is therefore of interest. Osteopontin (OPN) has been discussed as an endogenous hypoxia biomarker. It is overexpressed in many cancers and is involved in tumor progression and metastasis. Methods To examine the influence of hypoxia and irradiation on osteopontin expression we used different cell lines (head and neck cancer (Cal27 and FaDu) and glioblastoma multiforme (U251 and U87)). Cells were treated with hypoxia for 24 h and were then irradiated with doses of 2 and 8 Gy. Osteopontin expression was analyzed on mRNA level by quantitative real-time RT-PCR (qPCR) and on protein level by western blot. Cell culture supernatants were evaluated for secreted OPN by ELISA. Results Hypoxia caused an increase in osteopontin protein expression in all cell lines. In Cal27 a corresponding increase in OPN mRNA expression was observed. In contrast the other cell lines showed a reduced mRNA expression under hypoxic conditions. After irradiation OPN mRNA expression raised slightly in FaDu and U87 cells while it was reduced in U251 and stable in Cal27 cells under normoxia. The combined treatment (hypoxia and irradiation) led to a slight increase of OPN mRNA after 2 Gy in U251 (24 h) and in U87 (24 and 48 h) cell lines falling back to base line after 8 Gy. This effect was not seen in Cal27 or in FaDu cells. Secreted OPN was detected only in the two glioblastoma cell lines with reduced protein levels under hypoxic conditions. Again the combined treatment resulted in a minor increase in OPN secretion 48 hours after irradiation with 8 Gy. Conclusion Osteopontin expression is strongly modulated by hypoxia and only to a minor extent by irradiation. Intracellular OPN homeostasis seems to vary considerably between cell lines. This may explain the partly conflicting results concerning response prediction and prognosis in the clinical setting.}, language = {en} } @article{LapaLinsenmannLueckerathetal.2015, author = {Lapa, Constantin and Linsenmann, Thomas and L{\"u}ckerath, Katharina and Samnick, Samuel and Herrmann, Ken and Stoffer, Carolin and Ernestus, Ralf-Ingo and Buck, Andreas K. and L{\"o}hr, Mario and Monoranu, Camelia-Maria}, title = {Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy?}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0122269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125498}, pages = {e0122269}, year = {2015}, abstract = {Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM. Methods 15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry. Results The amount of microglia/macrophages ranged from <10\% to >50\% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns. Conclusion SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.}, language = {en} }