@phdthesis{Steiner2010, author = {Steiner, Melanie}, title = {Chirale 9-Oxabispidine - Design, enantioselektive Darstellung und Anwendung in der asymmetrischen Synthese}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51909}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Der bekannteste Vertreter der Bispidine ist das Lupinenalkaloid (-)-Spartein, das vor allem in enantioselektiven Deprotonierungen aber auch {\"U}bergangsmetall-katalysierten asymmetrischen Reaktionen als Ligand der Wahl eingesetzt wird. Daneben gibt es nur wenige weitere synthetische Vertreter, da keine flexiblen Darstellungsmethoden zu enantiomerenreinen Bispidinen mit variablen Substituenten in 2-endo-Position existieren. Ein zielgerichtetes Design solcher Verbindungen war daher bisher nur eingeschr{\"a}nkt m{\"o}glich. So sollte in dieser Arbeit eine neue Substanzklasse als chirale Liganden in der asymmetrischen Synthese etabliert werden: 2-endo-substituierte 9-Oxabispidine. Das Br{\"u}cken-Sauerstoffatom sollte die Synthese stark vereinfachen. Insgesamt wurden drei strategisch unterschiedliche Methoden zur enantioselektiven Synthese von 2-endo-substituierten 9-Oxabispidinen entwickelt. Zun{\"a}chst ist die sehr kurze Route zu 2-endo-Phenyl-substituierten Derivaten mit diversen Resten R' an den Stickstoff-Funktionen zu nennen. Ausgehend von k{\"a}uflichem (R,R)-Phenylglycidol wurde (S,S)-3-Benzylamino-3-phenyl-1,2-propandiol dargestellt, das in einer Dreistufen-Eintopf-Reaktion mit (S)-Epichlorhydrin kondensiert und zum all-cis-konfigurierten 2,6-Dimesyloxymethyl-3-phenylmorpholin mesyliert wurde. Die finale Cylisierung erfolgte mit prim{\"a}ren Aminen zu verschiedenen 2-endo-Phenyl-9-oxabispidinen in insgesamt drei bis f{\"u}nf Stufen. Die Darstellung des tricyclischen 9-Oxa-Derivats eines bekannten (+)-Spartein-Ersatzstoffs gelang nach einem verwandten Syntheseprotokoll. F{\"u}r eine effiziente Variation des 2-endo-Substituenten auf einer sp{\"a}ten Synthesestufe wurde zun{\"a}chst enantiomerenreines 3N-Boc-7N-Methyl-9-oxabispidin-2-on als Schl{\"u}sselintermediat ausgew{\"a}hlt, das aus (R)-Epichlorhydrin und racemischem Glycids{\"a}uremethylester dargestellt wurde. Die weitere {\"U}berf{\"u}hrung in die 9-Oxabispidine wurde durch Grignard-Addition, Abspaltung der N-Boc-Gruppe vom resultierenden, ringoffenen N-Boc-Aminoketon, Cyclisierung zum Imin und abschließende, exo-selektive Reduktion oder Hydrierung erreicht. So wurden bi- und tricyclische 9-Oxabispidine in nur drei Stufen und 51\% Ausbeute synthetisiert. Ein gr{\"o}ßeres Potenzial besitzt jedoch der prim{\"a}r von David Hein parallel zu den eigenen Arbeiten entwickelte Zugang {\"u}ber ein cis-konfiguriertes 6-(N-Boc-Aminomethyl)morpholin-2-carbonitril als zentrale Zwischenstufe, das auch im 10-g-Maßstab problemlos erh{\"a}ltlich war. Die allgemeine Anwendbarkeit und Flexibilit{\"a}t dieser Methode wurde anhand der Darstellung einer Reihe an 9-Oxabispidinen demonstriert. Die dargestellten chiralen 9-Oxabispidine wurden erstmalig in den folgenden f{\"u}nf unterschiedlichen Gebieten der asymmetrischen Synthese getestet: Organolithium- und Organomagnesium-vermittelte Umsetzungen sowie Pd(II)-, Cu(II) und Zink(II)-katalysierte Reaktionen. F{\"u}r enantioselektive Deprotonierungen schwach C-H-acider Verbindungen mit sBuLi erwiesen sich die 9-Oxabispidine als ungeeignet, da sie selbst in Br{\"u}ckenkopfposition lithiiert wurden. Die Stabilit{\"a}t der resultierenden -Lithioether war unerwartet hoch; sie ließen sich beispielsweise bei -78 °C in guten Ausbeuten mit Elektrophilen abfangen. Umlagerungen traten erst beim Aufw{\"a}rmen ein, wenn kein Elektrophil als Reaktionspartner zur Verf{\"u}gung stand. Als definierte Produkte wurden dabei Ring-kontrahierte N,O-Acetale erhalten. Zusammen mit den weniger basischen Grignard-Reagenzien wurden die 9-Oxabispidine erfolgreich zur Desymmetrisierung von meso-Anhydriden verwendet. Bei Pd(II)-katalysierten oxidativen kinetischen Racematspaltungen sekund{\"a}rer Alkohole konnten mit einem 9-Oxabispidin-Pd(II)-Katalysator Selektivit{\"a}tsfaktoren s vergleichbar zu denen mit (-)-Spartein erzielt werden. Die Ursache f{\"u}r die geringere Reaktivit{\"a}t der 9-Oxabispidin-Komplexe liegt gem{\"a}ß quantenchemischen Berechnungen in der Elektronegativit{\"a}t des Br{\"u}cken-Sauerstoffatoms, was die Elektronendichte am Palladiumatom verringert. In Kooperation mit David Hein wurde ein von einem tricyclischen 9-Oxabispidin abgeleiteter Cu-Katalysator entwickelt, der bei der Addition von Nitromethan an zahreiche aromatische, heteroaromatische und aliphatische Aldehyde exzellente Enantioselektivit{\"a}ten im Bereich von 91-97\% lieferte. Mit bicyclischen, 2-endo-substituierten 9-Oxabispidinen als chiralen Liganden wurden hingegen lediglich 33-57\% ee erreicht  bemerkenswerterweise entstanden hierbei bevorzugt die enantiokomplement{\"a}ren β-Nitroalkohole. In Zusammenarbeit mit Janna B{\"o}rner aus der Arbeitsgruppe von S. Herres-Pawlis wurde der erste chirale, neutrale Diamin-Zink(II)-Katalysator f{\"u}r die Ring{\"o}ffnungs-Polymerisation von D,L-Lactid entwickelt. Die Reaktion ben{\"o}tigte kein weiteres anionisches Additiv und konnte ohne L{\"o}sungsmittel mit nicht-aufgereinigtem, k{\"a}uflichem Lactid durchgef{\"u}hrt werden.}, subject = {Bispidinderivate}, language = {de} } @phdthesis{Strohfeldt2004, author = {Strohfeldt, Katja}, title = {Molek{\"u}lstrukturen und Reaktionsverhalten von Lithiumorganylen in chiraler Umgebung : chirale alpha-substituierte Lithiumorganyle mit den Heteroelementen Schwefel, Silicium und Stickstoff sowie (-)-Spartein-Addukte vielfach eingesetzter Lithiumalkyl-Reagenzien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die vorliegende Arbeit liefert einen Beitrag zur Synthese alpha-heteroatomstabilisierter Lithiumorganyle (Heteroatom = Schwefel, Silicium, Stickstoff), sowie Struktur/Reaktivt{\"a}tsstudien auf der Basis von strukturellen Charakterisierungen. Dabei standen verschiedene Methoden zur r{\"a}umlichen Verkn{\"u}pfung der alpha-heteroatomstabilisierten Lithiumorganyle mit einer definierten stereochemischen Information im Mittelpunkt der Forschungsarbeit. Die Arbeit gliedert sich in die folgenden drei Bereiche: Studien zu Struktur, Reaktivit{\"a}t und stereochemischen Aspekten von alpha-(Phenylthio)benzyllithium; 2-silylsubstituierte N-Methylpyrrolidine: Stereochemische Studien zur Darstellung und Reaktivit{\"a}t; Festk{\"o}rperstrukturen wichtiger (-)-Spartein-koordinierter Deprotonierungsreagenzien auf der Basis einfacher Lithiumorganyle. Den ersten Schwerpunkt dieser Arbeit bildeten Studien zu Struktur, Reaktivit{\"a}t und stereochemischen Aspekten von alpha-(Phenylthio)benzyllithium. Am Beispiel von alpha-(Phenylthio)benzyllithium sollte die intermolekulare Einf{\"u}hrung einer stereochemischen Information durch ein chirales Auxiliar [(-)-Spartein] genauer studiert werden. Aufbauend auf Studien von T. Toru und Mitarbeitern, die gezeigt hatten, dass gerade (-)-Spartein bei der asymmetrischen Deprotonierung von Benzylphenylsulfid keine befriedigende asymmetrische Induktion bewirkt, wurde eine Erkl{\"a}rung f{\"u}r diese mangelnde Stereoselektivit{\"a}t gesucht. Dabei erhoffte man sich, durch Kenntnisse der Festk{\"o}rperstruktur R{\"u}ckschl{\"u}sse auf die Reaktivit{\"a}t ziehen zu k{\"o}nnen und Ansatzpunkte f{\"u}r eine Verbesserung der Stereoselektivit{\"a}t zu finden. Um ein genaueres Verst{\"a}ndnis f{\"u}r diese Metallierungsreaktion entwickeln zu k{\"o}nnen, wurden zun{\"a}chst Studien zur Deprotonierung von Benzylphenylsulfid sowohl in Anwesenheit verschiedener koordinierender achiraler Zus{\"a}tze [THF, TMEDA, PMDTA], des chiralen Zusatzes (-)-Spartein als auch ohne koordinierendes Solvens durchgef{\"u}hrt. Dabei erhielt man Hinweise auf Prozesse, welche die Stereoselektivit{\"a}t beeinflussen, wie z. B. eine durch Tageslicht induzierte Abl{\"o}sung des Metallkomplexfragmentes vom „carbanionischen" Zentrum oder eine auf Carbenbildung basierende Zersetzungsreaktion des prim{\"a}r gebildeten Lithiumalkyls. Den zweiten Schwerpunkt dieser Arbeit bildeten stereochemische Studien zur Darstellung und Reaktivit{\"a}t von 2-silylsubstituierten N-Methylpyrrolidinen. Im Mittelpunkt standen Studien zur {\"U}bertragung der Stereoinformation von einem bestehenden auf das neu generierte (lithiierte) Stereozentrum innerhalb eines „starren Systems", das durch intramolekulare Koordination des Lithiumzentrums gebildet wurde. Dabei konnten u. a. ein interessanter Zugang zu enantiomerenreinen N-Methyl-2-silylsubstituierten Pyrrolidinen und zu enantiomerenangereicherten 2-silylsubstituierten Pyrrolidinen, die am Stickstoffzentrum funktionalisiert werden k{\"o}nnen, gezeigt werden. Weiterhin erhielt man in anschließenden Studien zur Metallierung dieser N-Methyl-2-silylsubstituierten Pyrrolidine einen Einblick in den stereochemischen Verlauf dieser Reaktion und die strukturbestimmenden Faktoren. Den dritten Schwerpunkt dieser Arbeit bildete die strukturelle Charakterisierung wichtiger (-)-Spartein-koordinierter Deprotonierungsreagenzien auf der Basis einfacher Lithiumorganyle im Festk{\"o}rper. Die Kombinationen aus (-)-Spartein und verschiedenen Alkyllithiumbasen gelten als die entscheidenden Reagenzien zum Aufbau „optisch aktiver Carbanionen". Die Reaktivit{\"a}t von Lithiumorganylen steht oft in einem engen Zusammenhang mit der Struktur, so dass versucht wurde, durch Interpretation der Festk{\"o}rperstrukturen eine Erkl{\"a}rung f{\"u}r die unterschiedlichen Reaktivit{\"a}ten der verschiedenen (-)-Spartein-koordinierten Alkyl- und Aryllithiumbasen zu finden. Dabei zeigte eine vergleichende Untersuchung der Festk{\"o}rperstrukturen von (-)-Spartein-koordinierten Organolithiumverbindungen einen klaren Zusammenhang zwischen dem sterischen Anspruch der Alkyl- bzw. Aryllithiumbase und dem Aggregationsgrad. Je gr{\"o}ßer der sterische Anspruch der Alkyllithiumbase ist, desto kleiner ist der Aggregationsgrad, wobei gerade Monomere als die reaktive Spezies in Deprotonierungsreaktion postuliert werden. Eine gezielte Abnahme des Aggregationsgrades kann also durch eine Erh{\"o}hung des sterischen Anspruches der Organolithiumbase erreicht werden, so dass durch den Einsatz der sterisch anspruchsvollen Alkyllithiumbase tert-Butyllithium sogar die erste monomere Festk{\"o}rperstruktur einer Butyllithiumverbindung erhalten werden konnte. Aber auch weitere (-)-Spartein-koordinierte Alkyl- und Aryllithiumbasen besitzen im Festk{\"o}rper interessante und z. T., f{\"u}r einfache Lithiumalkyle unbekannte, Strukturmotive, so dass R{\"u}ckschl{\"u}sse auf die Reaktivit{\"a}ten gezogen werden konnten. Diese Studien zu Festk{\"o}rperstrukturen (-)-Spartein-koordinierter Deprotonierungsreagenzien wurden durch quantenchemische Studien unterst{\"u}tzt.}, subject = {Lithiumorganische Verbindungen}, language = {de} }