@phdthesis{JungbauergebUlzhoefer2018, author = {Jungbauer [geb. Ulzh{\"o}fer], Sandra Gabi}, title = {Die Rolle pr{\"a}synaptischer Proteine Aktiver Zonen bei konditionierten Lernprozessen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169090}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Synaptische Plastizit{\"a}t wird als Grundlage f{\"u}r Lern- und Ged{\"a}chtnisprozesse in unserem Gehirn angesehen. Aktive Zonen (AZ) und ihre spezifischen Proteine modulieren diesen Prozess und bahnen essentielle Vorg{\"a}nge der synaptischen Transmission. In dieser Arbeit wurden drei zentrale Proteine Aktiver Zonen - Bruchpilot, RIM (Rab3 interacting molecule) und Fife - untersucht und ihre Rolle bei konditionierten Lernprozessen in Drosophila melanogaster Larven gepr{\"u}ft. Hierzu wurde das etablierte Paradigma des larvalen appetitiven olfaktorischen Lernens genutzt, bei dem eine Gruppe von Larven lernt, einen Duft mit einem gustatorischen Verst{\"a}rker zu koppeln. Durch die vielf{\"a}ltigen genetischen Manipulationsm{\"o}glichkeiten des Modellorganismus war es m{\"o}glich, die Funktion der Proteine bei assoziativen Lernvorg{\"a}ngen selektiv zu betrachten. Bruchpilot wird f{\"u}r den funktionellen Aufbau Aktiver Zonen in Drosophila ben{\"o}tigt und ist wichtig f{\"u}r die Akkumulation von Calcium-Kan{\"a}len in der N{\"a}he von AZ. Durch gentechnische Ver{\"a}nderungen dieses Proteins ließ sich jedoch keine Beeintr{\"a}chtigung im olfaktorischen Lernverhalten von Drosophila Larven beobachten. RIM fungiert durch seine Interaktionsdom{\"a}nen als Bindeglied zwischen verschiedensten Effektoren und hat Einfluss auf synaptische Plastizit{\"a}t. Es wurde gezeigt, dass eine Punktmutation in der C2A-Dom{\"a}ne von RIM beim Menschen gleichzeitig zur Retinadegeneration und zu einem gesteigert verbalen IQ (Intelligenzquotient) f{\"u}hrt. Eine durch die hohe Homologie vergleichbare Mutation im Drosophila-Genom resultierte nicht in einem ver{\"a}nderten Ph{\"a}notyp im olfaktorischen Lernen. Fife ist ein Protein, das f{\"u}r eine funktionsf{\"a}hige Architektur von AZ und damit u.a. f{\"u}r den reibungslosen Vesikelverkehr zust{\"a}ndig ist. Es zeigte sich, dass dieses Protein auch synaptische Plastizit{\"a}t und Lernvorg{\"a}nge beeinflusst. Die Ergebnisse der vorliegenden Arbeit sind ein Beitrag, um die Zusammenh{\"a}nge der synaptischen Plastizit{\"a}t und die Funktion Aktiver Zonen Proteine besser begreifen zu k{\"o}nnen. Hervorzuheben dabei ist, dass die Bruchpilot- und RIM-Mutanten-Larven keinen ver{\"a}nderten Ph{\"a}notyp, bzw. bei Fife nur teilweise einen eingeschr{\"a}nkten Ph{\"a}notyp im olfaktorischen larvalen Lernen im Vergleich zu den Wildtyp-Kontrollen zeigten. Gleichwohl man fr{\"u}her schon signifikante strukturelle Ver{\"a}nderungen an Aktiven Zonen dieser Mutanten an der neuromuskul{\"a}ren Endplatte und auch Effekte auf das Verhalten in adulten Drosophila gefunden hat. Es wird entscheidend sein, den Zusammenhang zwischen Struktur und Funktion Aktiver Zonen Proteine weiter zu konkretisieren.}, subject = {Plastizit{\"a}t}, language = {de} }