@phdthesis{Hoffmann2003, author = {Hoffmann, Markus Fritz Heinrich}, title = {Induktion von Sekund{\"a}rstrukturen durch den Einbau von Alanyl-PNA in Peptide und Proteine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6308}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die Aktivit{\"a}t von Biooligomeren wird wesentlich beeinflusst von deren molekularer Struktur bzw. Konformation. Eine Einflussnahme auf die Struktur sollte deswegen auch mit einer Aktivit{\"a}tsver{\"a}nderung einhergehen, ein „Schalten" von Struktur somit ein „Schalten" von Aktivit{\"a}t nach sich ziehen. Alanyl-PNA ist ein Oligopeptid alternierender Konfiguration mit Nukleobasen in \&\#946;-Position der Alanyl-Einheiten, das durch Wasserstoffbr{\"u}ckenbildung und \&\#960;-Stacking mit einem komplement{\"a}ren Strang Paarungsduplexe mit \&\#946;-faltblattartiger linearer Struktur eingeht. Der Einbau eines Alanyl-PNA-Stranges in ein Peptid oder Protein und Zugabe des korrespondierenden Gegenstranges sollte zu einer lokalen Induktion eines \&\#946;-Faltblattes f{\"u}hren und strukturelle Ver{\"a}nderungen im Gesamtpeptid hervorrufen. Es kann dann von einem molekularen Schalter gesprochen werden. Im Rahmen dieser Arbeit wurde eine vom cyclischen Peptidantibiotikum Gramicidin S abgeleitete 18mer-Peptid-Alanyl-PNA-Chim{\"a}re 20 mit eingebautem Alanyl-PNA-Pentamer dargestellt. Es konnte mittels temperaturabh{\"a}ngiger UV-Spektroskopie gezeigt werden, dass sich bei Zugabe des komplement{\"a}ren Gegenstranges nichtkovalente Duplexe bilden. CD-spektroskopische Untersuchungen dieses Dimers lieferten keine eindeutigen Beweise f{\"u}r das vorliegen eines \&\#946;-Faltblattes. Es konnte anhand des humanen Interleukins 8 gezeigt werden, dass der Einbau von Alanyl-PNA durch die Technik der native chemical ligation in gr{\"o}ßere Peptide m{\"o}glich ist. Hierf{\"u}r wurde der N-terminale Thioester 31 des humanen Interleukins hIL8(1-55) durch Expression des Fusionsproteines in E.coli und Expressed Protein Ligation dargestellt. Nach Umsetzung des Thioesters 31 mit einem Alanyl-PNA-Peptid-Hybrid 29, das N-terminal mit einem freien Cystein substituiert ist, wurde durch native chemical ligation ein von dem humanen Interleukin 8 abgeleitetes 77 Aminos{\"a}uren enthaltendes Peptid 30 mit eingebauter Alanyl-PNA erhalten. Dar{\"u}ber hinaus wurden mit keinem, einem oder zwei Lysinen substituierte Alanyl-PNA-Hexamere dargestellt und Strukturuntersuchungen unterworfen. Es konnte mittels temperaturabh{\"a}ngiger UV-Spektroskopie gezeigt werden, dass der Einbau zweier Lysine sowohl die L{\"o}slichkeit als auch die Bildungskinetik ver{\"a}ndert, die Stabilit{\"a}t (Tm-Wert) der Duplexe jedoch unver{\"a}ndert l{\"a}sst. Diese Hexamere wurden Kristallisationsversuchen unterworfen, bisher konnten noch keine Kristalle erhalten werden. Basierend auf den im Rahmen dieser Arbeit erhaltenen Ergebnissen sollte es in Zukunft dar{\"u}ber hinaus m{\"o}glich sein, genaueren Aufschluss {\"u}ber die Struktur von Alanyl-PNA zu erhalten. Die Erh{\"o}hung der L{\"o}slichkeit von Alanyl-PNA durch Einbau zweier Lysine erm{\"o}glicht nicht nur weitere Kristallisationsversuche, sondern man gelangt auch in Konzentrationsbereiche, in denen NMR-Untersuchungen an Alanyl-PNA m{\"o}glich werden, die bisher aufgrund zu schlechter L{\"o}slichkeit zu keinen zufrieden stellenden Ergebnissen gef{\"u}hrt haben. Durch weitere Optimierung der native chemical ligation und Bereitstellung gr{\"o}ßerer Mengen von Interleukin 8 Derivaten mit eingebauter Alanyl-PNA sollte es in Zukunft m{\"o}glich sein, den Einfluss des komplement{\"a}ren Alanyl-PNA-Stranges auf die Struktur des Gesamtsystems und dessen biologischer Aktivit{\"a}t zu untersuchen. Durch Variation und Optimierung der Sequenz und des {\"o}rtlichen Einbaus der Alanyl-PNA kann so vielleicht das Fernziel eines molekularen strukturellen Schalters f{\"u}r Peptide bzw. Proteine erreicht werden. Ebenso ist es denkbar, dass durch den Einbau von Alanyl-PNA in zwei verschiedene Peptide bzw. Proteine nichtkovalente Protein-Protein-Komplexe erhalten werden k{\"o}nnen.}, subject = {Peptide}, language = {de} } @phdthesis{Petry2002, author = {Petry, Renate}, title = {Spektroskopische Strukturanalytik synthetischer Polypeptide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-664}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In der vorliegenden Arbeit wurden zwei spektroskopische Methoden (Raman- und Circulardichroismus-Spektroskopie) und die Kernspinresonanz zur Untersuchung der Sekund{\"a}rstruktur von synthetischen Polypeptiden eingesetzt. Dabei wurden die Struktur-Funktions-Beziehungen der dritten extrazellul{\"a}ren Schleife des Gonadotropin-freisetzenden Rezeptors (GnRH-R) untersucht. Die spektroskopischen Ergebnisse belegten, dass die zuvor getroffene Aussage {\"u}ber eine vorhandene helikale Struktur revidiert werden musste. Die Strukturanalysen mit Hilfe der CD-, Raman- und 2D NMR-Experimente an zwei Serien von Polypeptiden lieferten Aussagen {\"u}ber die Sekund{\"a}rstruktur. Insbesondere die Raman-Untersuchungen in Verbindung mit einer statistischen Datenanalyse lieferten detaillierte Information {\"u}ber subtile Konformations{\"a}nderungen, die einerseits durch die Addition und andererseits durch die Substitution einzelner Aminos{\"a}uren in den synthetischen Polypeptiden ausgel{\"o}st wurden. Anhand der ausgew{\"a}hlten Raman-Linien konnte nachgewiesen werden, dass sowohl die {\"A}nderungen der Polypeptidkettenl{\"a}nge als auch die {\"A}nderung der Polypeptidsequenzen mit den beobachteten Intensit{\"a}ten der Raman-Linien korreliert sind.}, subject = {Synthetische Polypeptide}, language = {de} } @phdthesis{Goetz2018, author = {G{\"o}tz, Silvia}, title = {Zuo1 - ein neues G-Quadruplex-bindendes Protein in \(Saccharomyces\) \(cerevisiae\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152158}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {G-Quadruplex (G4)-Strukturen sind sehr stabile und polymorphe DNA und RNA Sekund{\"a}rstrukturen mit einem konservierten Guanin-reichen Sequenzmotiv (G4-Motiv). Sie bestehen aus {\"u}bereinander gestapelten planaren G-Quartetts, in denen je vier Guanine durch Wasserstoffbr{\"u}ckenbindungen zusammengehalten werden. Da G4-Motive in Eukaryoten an bestimmten Stellen im Genom angereichert vorkommen, wird angenommen, dass die Funktion von G4-Strukturen darin besteht, biologische Prozesse positiv oder negativ zu regulieren. Aufgrund der hohen thermodynamischen Stabilit{\"a}t von G4 Strukturen ist davon auszugehen, dass Proteine in die Faltung, Stabilisierung und Entfaltung dieser Nukleins{\"a}ure-Strukturen regulatorisch involviert sind. Bis heute wurden viele Proteine in der Literatur beschrieben, die G4-Strukturen entwinden k{\"o}nnen. Jedoch konnten bisher nur wenige Proteine identifiziert werden, die in vivo die Faltung f{\"o}rdern oder G4-Strukturen stabilisieren. Durch Yeast One-Hybrid (Y1H)-Screenings habe ich Zuo1 als neues G4 bindendes Protein identifiziert. In vitro Analysen best{\"a}tigten diese Interaktion und es stellte sich heraus, dass Zuo1 G4-Strukturen stabilisiert. {\"U}bereinstimmend mit den in vitro Daten konnte gezeigt werden, dass Zuo1 signifikant an G4-Motive im Genom von Saccharomyces ceresivisiae bindet. Genomweit {\"u}berlappen G4-Motive, an die Zuo1 bindet, mit Stellen, an denen die DNA Replikation zum Stillstand kommt und vermehrt DNA Sch{\"a}den vorkommen. Diese Ergebnisse legen nahe, dass Zuo1 eine Funktion w{\"a}hrend der DNA Reparatur oder in Zusammenhang mit dem Vorankommen der DNA Replikationsgabel hat, indem G4-Strukturen stabilisiert werden. Diese Hypothese wird außerdem durch genetische Experimente gest{\"u}tzt, wonach in Abwesenheit von Zuo1 die Genominstabilit{\"a}t zunimmt. Aufgrund dieser Daten war es m{\"o}glich ein Model zu entwickeln, bei dem Zuo1 w{\"a}hrend der S-Phase G4-Strukturen bindet und stabilisiert wodurch die DNA Replikation blockiert wird. Diese Interaktion findet neben Stellen schadhafter DNA statt und unterst{\"u}tzt somit DNA Reparatur-Prozesse wie beispielsweise die Nukleotidexzisionsreparatur. Als weiteres potentielles G4-bindendes Protein wurde Slx9 in Y1H-Screenings identifiziert. In vitro Experimente zeigten zwar, dass Slx9 mit h{\"o}herer Affinit{\"a}t an G4-Strukturen bindet im Vergleich zu anderen getesteten DNA Konformationen, jedoch wurde in S. cerevisiae genomweit keine signifikante Bindung an G4-Motive festgestellt.}, subject = {Saccharomyces cerevisiae}, language = {de} }