@phdthesis{Kretzler2002, author = {Kretzler, Kai}, title = {Eine neue Methode zur Bestimmung der Fließeigenschaften von Sch{\"u}ttg{\"u}tern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1182028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die Fließeigenschaften von Sch{\"u}ttg{\"u}tern spielen in vielen Industriezweigen eine entscheidende Rolle. Dies gilt speziell f{\"u}r die pharmazeutischen Industrie wo sie als Anfangs-, Zwischen- und Endprodukt vorkommen. Dort werden sie meist in Silos gelagert und m{\"u}ssen so durch R{\"o}hrensysteme fließen um verarbeitet zu werden. Dabei tritt das Problem der Br{\"u}ckenbildung h{\"a}ufig auf. Der Auslauftrichter stellt eine neue Methode dar, die Fließeigenschaften und speziell die Br{\"u}ckenbildung von Pulvern zu untersuchen. Das zu untersuchende Pulver wird in einen verschließbaren Trichter ohne angesetztes Rohr eingef{\"u}llt. Nach der {\"O}ffnung des Verschlusses fließt ein koh{\"a}sives Pulver wegen der Br{\"u}ckenbildung nicht aus dem Trichter. Dabei bestimmen die interpartikul{\"a}ren Kr{\"a}fte die St{\"a}rke und die Dimensionen der Br{\"u}cke. Es wird daher angenommen, dass eine Messung der zur Zerst{\"o}rung der Br{\"u}cken notwendigen Kr{\"a}fte R{\"u}ckschl{\"u}sse auf den Ort der Br{\"u}ckenbildung und der Fließeigenschaften des Sch{\"u}ttgutes erlaubt. Die Untersuchung der Br{\"u}ckenbildung mit dem modifizierten Auslauftrichter zeigte, dass die Br{\"u}cken, die den Pulverfluss behindern, nur im unteren Viertel des Trichters auftreten. Diese Br{\"u}cken k{\"o}nnen durch ein spezielles R{\"u}hrwerkzeug zerst{\"o}rt werden und damit ein Pulver zum Ausfließen bringen. Die Messung des notwendigen Drehmoments l{\"a}sst R{\"u}ckschl{\"u}sse auf die Koh{\"a}sion des Pulvers zu. W{\"a}hrend der Messung korrelieren der Drehmoment-Anstieg und -Abfall mit dem pulsierenden Ausflussverhalten der Pulver. Auch sehr langsame Rotationsgeschwindigkeiten k{\"o}nnen ein Pulver zum Ausfließen bringen. In einem Bereich von 0,5 bis 3 U/min ist ein fast linearer Zusammenhang zwischen Rotationsgeschwindigkeit und Ausflusszeit zu beobachten. Eine weitere Zunahme der Rotationsgeschwindigkeit f{\"u}hrt aber nicht zu einer weiteren Verk{\"u}rzung der Ausflusszeiten. Nach einer mathematischen Aufbereitung der Messkurven bei 10 bis 20 U/min konnte eine Korrelation zwischen der Umdrehungsgeschwindigkeit und dem Drehmoment gefunden werden. Ein bereits entwickelter Auslauftrichter war jedoch nicht in der Lage neue und f{\"u}r diese Arbeit relevante Fragen zu beantworten, da die Messtechnik und die Aufl{\"o}sung der Messsignale unzureichend war. Daher wurden zun{\"a}chst einige technische Ver{\"a}nderungen vorgenommen. Am Ende jedoch musste der Auslauftrichter komplett neu aufgebaut werden. Um leichter reproduzierbare Ergebnisse zu erhalten war es notwendig die Messungen unter klimatisierten Bedingungen (relative Feuchte und Temperatur) durchzuf{\"u}hren. Speziell die Feuchtigkeit hat einen entscheidenden Einfluss auf das Ausflussverhalten. Es wurde {\"u}berpr{\"u}ft, ob die Rotationsgeschwindigkeit einen Einfluss auf das maximale Drehmoment zur Br{\"u}ckenzerst{\"o}rung hat. Versuche zeigten jedoch, dass ein derartiger Zusammenhang nicht besteht. Das lawinenartige Fließen des Pulvers bei langsamen Rotationsgeschwindigkeiten warf die Frage auf, ob die H{\"o}he der Massepeaks vom R{\"u}hrwerkzeug abh{\"a}ngt. Ein Experiment konnte jedoch zeigen, dass ein derartiger Zusammenhang nicht besteht, wenn die R{\"u}hrer eine Mindestgr{\"o}ße besitzen. Bis zu dieser H{\"o}he ist die entleerte Masse proportional zum Volumen welches der R{\"u}hrer als Rotationsk{\"o}rper besitzt. Es wird daher angenommen, dass diese H{\"o}he mit der Br{\"u}ckenbildungszone identisch ist. Abschießend sollte untersucht werden, wo genau und wie stark die Br{\"u}cken sind. Nach dem mathematisch physikalischen Zusammenhang, der anhand einer idealviskosen Fl{\"u}ssigkeit {\"u}berpr{\"u}ft wurde, ergibt sich eine Abh{\"a}ngigkeit des Drehmoments von der dritten Potenz der L{\"a}nge der R{\"u}hrelemente. In Bezug auf diesen Zusammenhang wurden die Ergebnisse der Messungen von Starch® 1500 und als weitere Substanz Prosolv® SMCC 50 untersucht. Betrachtet man hierbei die Drehmomentmaxima so ist der relative Anstieg des Drehmomentes in der Br{\"u}ckenzone am gr{\"o}ßten. Pulver oberhalb der Br{\"u}ckenzone zeigt dabei das Verhalten einer idealviskosen Fl{\"u}ssigkeit.}, subject = {Sch{\"u}ttgut}, language = {de} } @phdthesis{Ruppel2008, author = {Ruppel, Joanna}, title = {Vergleich unterschiedlicher Messmethoden zur Beurteilung der Potenz nanostrukturierter Fließregulierungsmittel}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28066}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {In der vorliegenden Arbeit wurde der fließregulierende Effekt diverser hochdisperser F{\"a}llungskiesels{\"a}uren vom Typ SIPERNAT® (Evonik Degussa GmbH) auf die Fließeigenschaften koh{\"a}siver Sch{\"u}ttg{\"u}ter untersucht. Der Wirkmechanismus dieser nanostrukturierten Fließregulierungsmittel beruht bei trockenen und elektrostatisch nicht aufgeladenen Pulvern vorwiegend auf der Reduktion von van-der-Waals-Kr{\"a}ften durch Adsorption kleinerer Aggregate des Fließregulierungsmittels an die Oberfl{\"a}che der Sch{\"u}ttgutpartikel und somit Vergr{\"o}ßerung des Abstandes bzw. Verkleinerung der Kontaktfl{\"a}chen zwischen den Tr{\"a}gerpartikeln. Durch unterschiedlich langes Mischen von Fließregulierungsmitteln mit koh{\"a}siven Sch{\"u}ttg{\"u}tern ver{\"a}ndert sich sowohl die Anzahl adsorbierter Nanopartikel als auch die Gr{\"o}ße, Gr{\"o}ßenverteilung und Form der Adsorbate, was in unterschiedlichen Fließeigenschaften der Mischungen resultiert. Zur Untersuchung des Zusammenhanges zwischen Oberfl{\"a}chenbelegung durch Adsorbate und Fließeigenschaften einer Mischung wurde Maisst{\"a}rke, die als koh{\"a}sives Modellsch{\"u}ttgut fungierte, eine konstante Menge Fließregulierungsmittel zugesetzt und die Mischungen unterschiedlich langen Mischzeiten in einem Freifallmischer unterzogen. Die aus dem Mischprozeß resultierende Belegung der Maisst{\"a}rkeoberfl{\"a}che durch Adsorbate wurde mittels Rasterelektronenmikroskop mit anschließender bildanalytischer Auswertung (KL 300®, Carl Zeiss) charakterisiert. Die Fließeigenschaften der Mischungen wurden mit einem Zugspannungstester, einem modifizierten Auslauftrichter sowie Hausner-Faktor untersucht. Es konnte gezeigt werden, daß sich die Fließeigenschaften mit steigender Mischzeit kontinuierlich bis zum Erreichen eines Optimums verbessern. Dies wird mit der Abnahme der Adsorbatgr{\"o}ßen und der Zunahme der Adsorbatanzahl auf der Maisst{\"a}rkeoberfl{\"a}che erkl{\"a}rt. Bei kurzen Mischzeiten bewirken adsorbierte Fließregulierungsmittelaggregate eine Verbesserung der Fließeigenschaften durch Verhinderung direkter Kontakte zwischen den Sch{\"u}ttgutpartikeln. Bei weiterer Zunahme der Oberfl{\"a}chenbelegung werden die Fließeigenschaften durch einen {\"U}bergang von Tr{\"a}ger-Adsorbat-Tr{\"a}ger-Kontakten zu Tr{\"a}ger-Adsorbat-Adsorbat-Tr{\"a}ger-Kontakten verbessert. Eine beobachtete Verschlechterung der Fließeigenschaften nach {\"U}berschreiten der optimalen Mischzeit beruht wahrscheinlich auf einer Ver{\"a}nderung der dreidimensionalen Form der Adsorbate, die zu einer Vergr{\"o}ßerung der Kontaktfl{\"a}chen f{\"u}hrt. Beim Vergleich der unterschiedlichen Messmethoden zur Ermittlung der Fließeigenschaften wurde ersichtlich, dass die Messparameter des modifizierten Auslauftrichters gut mit dem Hausner-Faktor korrelieren, w{\"a}hrend die Zugspannungsmessungen z.T. abweichende Ergebnisse lieferten. Eine genaue Analyse des Messvorgangs am Zugspannungstester zeigte, dass die Pulverproben bei der verwendeten Messmethode (Messung mit konstanter Vorlast) in Abh{\"a}ngigkeit von ihren Fließeigenschaften unterschiedlich stark durch den Messvorgang verdichtet werden, was Einfluss auf die gemessenen Zugspannungswerte hatte. Aus dieser Erkenntnis konnten Verbesserungsvorschl{\"a}ge f{\"u}r die Zugspannungsmessung an Sch{\"u}ttg{\"u}tern gemacht werden.}, subject = {Siliciumdioxid}, language = {de} }