@phdthesis{Schubert2021, author = {Schubert, Jonathan}, title = {Bildgebende Zweifarben-Einzelmolek{\"u}l-PET-Fluoreszenzspektroskopie am molekularen Chaperon Hsp90}, doi = {10.25972/OPUS-24493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244938}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Im Forschungsfeld der Proteindynamik h{\"a}ufen sich in den letzten Jahren Untersuchungen an einzelnen Molek{\"u}len. Damit k{\"o}nnen molekulare Ereignisse, die in konventioneller Spektroskopie durch stochastische Prozesse unentdeckt bleiben, durch direkte Beobachtung identifiziert und analysiert werden, was zu tieferem mechanistischem Verst{\"a}ndnis des untersuchten Systems beitragen kann. Die Implikation des molekularen Chaperons Hsp90 in die korrekte Faltung und Aktivierung einer Vielzahl davon abh{\"a}ngiger Klientenproteine machen es zu einem zentralen Knotenpunkt der zellul{\"a}ren Proteinhom{\"o}ostase, allerdings ist der Mechanismus seiner breiten Klientenerkennung und -prozessierung bisher nur l{\"u}ckenhaft untersucht. Mit der Erkenntnis, dass Hsp90 ATP abh{\"a}ngig große, ratenlimitierende Umstrukturierungen erf{\"a}hrt, wurden Reportersysteme entwickelt, die auf dem F{\"o}rster-Resonanzenergietransfer mit einer r{\"a}umlichen Aufl{\"o}sung von ca. 2-10 nm basieren. Diese dokumentieren einen Klammerschluss des Chaperons und prognostizieren einen intermediatbbasierten Konformations-Zyklus. Details {\"u}ber den Mechanismus der Umstrukturierungen wurden mit der Entwicklung von Reportersystemen ermittelt, die auf dem photoinduzierten Elektronentransfer zwischen der Aminos{\"a}ure Tryptophan und einem organischen Farbstoff basieren. Die Technik beruht auf kontaktinduzierter Fluoreszenzl{\"o}schung und damit verbundenen digitalen Intensit{\"a}ts{\"u}berg{\"a}ngen, dabei erm{\"o}glicht die r{\"a}umliche Sensitivit{\"a}t von < 1 nm die Beobachtung von lokalen Umstrukturierungen. In Hsp90 wurden damit mittels konventioneller Spektroskopie drei kritische lokale Umlagerungen untersucht und daraus ein Modell mit heterogenen apo-Konformationen sowie ein kooperativer Konformationszyklus abgeleitet, der dem intermediatbasierten Modell gegen{\"u}bersteht. Im Rahmen dieser Dissertation wurde anhand des Hsp90-Chaperons eine Methode entwickelt, die eine bildgebende PET Fluoreszenzspektroskopie von mehreren Umstrukturierungen gleichzeitig an einzelnen Molek{\"u}len erlaubt. Ein umfangreiches Farbstoffscreening f{\"u}hrte zur Identifizierung eines Farbstoffpaars, das die PET-basierte simultane Aufzeichnung zweier Konformations-Koordinaten erm{\"o}glicht. {\"U}ber verschiedene Modifikationen des Chaperons konnten einzelmolek{\"u}ltaugliche Oberfl{\"a}chen hergestellt werden, auf denen zweifach markierte Hsp90-Proteine immobilisiert sind. Fluoreszenzintensit{\"a}tszeitspuren einzelner Chaperone und entsprechende Kontrollkonstrukte best{\"a}tigen qualitativ den Erfolg der Methode, f{\"u}r die quantitative Analyse wurde eine Routine in der Programmiersprache Python entwickelt, mit welcher kinetische Informationen ermittelt werden konnten. Diese legen eine enge wechselseitige Abh{\"a}ngigkeit der drei lokalen Elemente nahe, wobei der Großteil der Konformations{\"u}berg{\"a}nge zweier simultan aufgezeichneter Umstrukturierungen Synchronit{\"a}t innerhalb von zwei Sekunden zeigt. Im Vergleich zur Hydrolyse von einem ATP in mehreren Minuten deutet das auf eine enge Kopplung hin. Weiter konnte eine Beschleunigung der Dynamiken durch aromatische Modifikation des N-Terminus von Hsp90 beobachtet werden, zudem erlaubt der Einzelmolek{\"u}lansatz die Verwendung des nativen Nukleotids ATP, wodurch auch die lokalen {\"O}ffnungsdynamiken zug{\"a}nglich werden. Die zur Bestimmung der Zeitkonstanten durchgef{\"u}hrte Analyse unterst{\"u}tzt die Ansicht heterogener apo-Zust{\"a}nde und einer einheitlich geschlossenen Konformation. Die bildgebende Zweifarben-Einzelmolek{\"u}l-PET-Spektroskopie konnte insgesamt zu einem Komplement der Einzelmolek{\"u}l-FRET-Spektroskopie entwickelt werden, um damit lokale Konformationsdynamiken zu untersuchen. Der bildgebende Ansatz erlaubt eine einfache Implementierung in einen experimentellen Einzelmolek{\"u}l-FRET Aufbau bei gleichzeitiger Erweiterung der beobachteten Koordinaten und wird so zu einem breit anwendbaren Werkzeug multidimensionaler Dynamikuntersuchungen einzelner Proteine.}, subject = {Fluoreszenzspektroskopie}, language = {de} } @phdthesis{Heiby2021, author = {Heiby, Julia}, title = {Insight into molecular mechanisms of folding and self-association of spider silk protein domains}, doi = {10.25972/OPUS-19345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193455}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Spider silk is a biomaterial of extraordinary toughness paired with elasticity. The assembly of silk proteins, so-called spidroins (from "spider" and "fibroin"), generates the silk threads we typically see in our garden or the corners of our houses. Although spider webs from different species vary considerably in geometry and size, many sections of spidroin sequences are conserved. Highly conserved regions, found in all spidroins, relate to the terminal domains of the protein, i.e., the N-terminal (NTD) and C-terminal domains (CTD). Both have an essential function in the silk fibre association and polymerisation. The NTD is a 14 kDa five-helix bundle, which self-associates via a pH-driven mechanism. This process is critical for starting the polymerisation of the fibre. However, detailed insights into how conserved this mechanism is in different species and the quantitative thermodynamic comparison between homologous NTDs was missing. For this reason, four homologous NTDs of the major ampullate gland (MaSp) from spider species Euprosthenops australis, Nephila clavipes, Latrodectus hesperus, and Latrodectus geometricus were investigated. I analysed and quantified equilibrium thermodynamics, kinetics of folding, and self-association. Methods involved dynamic light scattering (MALS), stopped-flow fluorescence and circular dichroism spectroscopy in combination with thermal and chemical denaturation experiments. The results showed conserved, cooperative two-state folding on a sub-millisecond time scale. All homologous NTDs showed a similarly fast association in the order of 10^9 M^-1 s^-1, while the resulting equilibrium dissociation constants were in the low nanomolar range. Electrostatic forces were found to be of great importance for protein association. Monomeric protein stability increased with salt concentration while enhancing its folding speed. However, due to Debye-H{\"u}ckel effects, we found intermolecular electrostatics to be shielded, which reduced the NTDs association capacity significantly at high ionic strength. Altogether, the energetics and kinetics of the NTD dimerisation was conserved for all analysed homologs. Comparable to the NTD, the spider silks CTD is also a α-helix bundle, which covalently links two spidroins. The orientation of the domains predetermines the future fibre geometry. Here again, the detailed quantitative characterisation of the folding and dimerisation was missing. Therefore, the CTD from the E. australis was analysed in-depth. The protein folded via a three-state mechanism and was placed in the family of knotted proteins. By analysing the amino acid composition of the NTD of the MaSp1 of the Euprosthenops australis, we found an unusually high content of methionine residues (Met). To elucidate why this protein exhibits so many Met residues, I mutated all core Mets simultaneously to leucine (Leu). Results revealed a dramatically stabilised NTD, which now folded 50 times faster. After solving the tertiary structure of the mutant by NMR (nuclear magnetic resonance) spectroscopy, the structure of the monomeric mutant was found to be identical with the wild-type protein. However, when probing the dimerisation of the NTD, I could show that the association capacity was substantially impaired for the mutant. Our findings lead to the conclusion that Met provides the NTD with enhanced conformational dynamics and thus mobilises the protein, which results in tightly associated dimers. In additional experiments, I first re-introduced new Met residues into the Met-depleted protein at sequence positions containing native Leu. Hence, the mutated NTD protein was provided with the same number of Leu, which were previously removed by mutation. However, the protein did not regain wild-type characteristics. The functionality was not restored, but its stability was decreased as expected. To probe our hypothesis gained from the MaSp NTD, I transferred the experiment to another protein, namely the Hsp90 chaperone. Therefore, I incorporated methionine residues in the protein, which resulted in a slight improvement of its function. Finally, trial experiments were performed aiming at the synthesis of shortened spidroin constructs containing less repetitive middle-segments than the wild-type protein. The objective was to study the findings of the terminal domains in the context of an intact spidroin. The synthesis of these engineered spidroins was challenging. Nevertheless, preliminary results encourage the assumption that the characteristics observed in the isolated domains hold true in the context of a full-length spidroin.}, subject = {Spinnenseide}, language = {en} }