@article{WangIpKlausKarikarietal.2017, author = {Wang Ip, Chi and Klaus, Laura-Christin and Karikari, Akua A. and Visanji, Naomi P. and Brotchie, Jonathan M. and Lang, Anthony E. and Volkmann, Jens and Koprich, James B.}, title = {AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease}, series = {Acta Neuropathologica Communications}, volume = {5}, journal = {Acta Neuropathologica Communications}, number = {11}, doi = {10.1186/s40478-017-0416-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159429}, year = {2017}, abstract = {α-Synuclein is a protein implicated in the etiopathogenesis of Parkinson's disease (PD). AAV1/2-driven overexpression of human mutated A53T-α-synuclein in rat and monkey substantia nigra (SN) induces degeneration of nigral dopaminergic neurons and decreases striatal dopamine and tyrosine hydroxylase (TH). Given certain advantages of the mouse, especially it being amendable to genetic manipulation, translating the AAV1/2-A53T α-synuclein model to mice would be of significant value. AAV1/2-A53T α-synuclein or AAV1/2 empty vector (EV) at a concentration of 5.16 x 10\(^{12}\) gp/ml were unilaterally injected into the right SN of male adult C57BL/6 mice. Post-mortem examinations included immunohistochemistry to analyze nigral α-synuclein, Ser129 phosphorylated α-synuclein and TH expression, striatal dopamine transporter (DAT) levels by autoradiography and dopamine levels by high performance liquid chromatography. At 10 weeks, in AAV1/2-A53T α-synuclein mice there was a 33\% reduction in TH+ dopaminergic nigral neurons (P < 0.001), 29\% deficit in striatal DAT binding (P < 0.05), 38\% and 33\% reductions in dopamine (P < 0.001) and DOPAC (P < 0.01) levels and a 60\% increase in dopamine turnover (homovanilic acid/dopamine ratio; P < 0.001). Immunofluorescence showed that the AAV1/2-A53T α-synuclein injected mice had widespread nigral and striatal expression of vector-delivered A53T-α-synuclein. Concurrent staining with human PD SN samples using gold standard histological methodology for Lewy pathology detection by proteinase K digestion and application of specific antibody raised against human Lewy body α-synuclein (LB509) and Ser129 phosphorylated α-synuclein (81A) revealed insoluble α-synuclein aggregates in AAV1/2-A53T α-synuclein mice resembling Lewy-like neurites and bodies. In the cylinder test, we observed significant paw use asymmetry in the AAV1/2-A53T α-synuclein group when compared to EV controls at 5 and 9 weeks post injection (P < 0.001; P < 0.05). These data show that unilateral injection of AAV1/2-A53T α-synuclein into the mouse SN leads to persistent motor deficits, neurodegeneration of the nigrostriatal dopaminergic system and development of Lewy-like pathology, thereby reflecting clinical and pathological hallmarks of human PD.}, language = {en} } @article{GerlachMaetzlerBroichetal.2012, author = {Gerlach, Manfred and Maetzler, Walter and Broich, Karl and Hampel, Harald and Rems, Lucas and Reum, Torsten and Riederer, Peter and St{\"a}ffler, Albrecht and Streffer, Johannes and Berg, Daniela}, title = {Biomarker candidates of neurodegeneration in Parkinson's disease for the evaluation of disease-modifying therapeutics}, series = {Journal of Neural Transmission}, volume = {119}, journal = {Journal of Neural Transmission}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125375}, pages = {39-52}, year = {2012}, abstract = {Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson's disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies.}, language = {en} } @article{GerlachMaetzlerBroichetal.2011, author = {Gerlach, Manfred and Maetzler, Walter and Broich, Karl and Hampel, Harald and Rems, Lucas and Reum, Torsten and Riederer, Peter and St{\"o}ffler, Albrecht and Streffer, Johannes and Berg, Daniela}, title = {Biomarker candidates of neurodegeneration in Parkinson's disease for the evaluation of disease-modifying therapeutics}, series = {Journal of Neural Transmission}, volume = {119}, journal = {Journal of Neural Transmission}, number = {1}, doi = {10.1007/s00702-011-0682-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133856}, pages = {39-52}, year = {2011}, abstract = {Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson's disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies.}, language = {en} } @article{PozziBolzoniBiellaetal.2023, author = {Pozzi, Nicol{\´o} Gabriele and Bolzoni, Francesco and Biella, Gabriele Eliseo Mario and Pezzoli, Gianni and Ip, Chi Wang and Volkmann, Jens and Cavallari, Paolo and Asan, Esther and Isaias, Ioannis Ugo}, title = {Brain noradrenergic innervation supports the development of Parkinson's tremor: a study in a reserpinized rat model}, series = {Cells}, volume = {12}, journal = {Cells}, number = {21}, issn = {2073-4409}, doi = {10.3390/cells12212529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357721}, year = {2023}, abstract = {The pathophysiology of tremor in Parkinson's disease (PD) is evolving towards a complex alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons (DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um\(^2\), p < 0.001) and was associated with significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-group: 1.6 ± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (\% of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic-rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the development of targeted therapies for PD patients.}, language = {en} } @article{BrumbergKuestersAlMomanietal.2017, author = {Brumberg, Joachim and K{\"u}sters, Sebastian and Al-Momani, Ehab and Marotta, Giorgio and Cosgrove, Kelly P. and van Dyck, Christopher H. and Herrmann, Ken and Homola, Gy{\"o}rgy A. and Pezzoli, Gianni and Buck, Andreas K. and Volkmann, Jens and Samnick, Samuel and Isaias, Ioannis U.}, title = {Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study}, series = {Annals of Clinical and Translational Neurology}, volume = {4}, journal = {Annals of Clinical and Translational Neurology}, number = {9}, doi = {10.1002/acn3.438}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170406}, pages = {632-639}, year = {2017}, abstract = {Objective: To investigate the association between levodopa-induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease. Methods: This study included 13 Parkinson's disease patients with peak-of-dose levodopa-induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5-[\(^{123}\)I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine single-photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [\(^{123}\)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography, to measure dopamine reuptake transporter density and 2-[\(^{18}\)F]fluoro-2-deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed. Results: Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side. Interpretation: Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic-depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression.}, language = {en} } @article{RiedererterMeulen2020, author = {Riederer, Peter and ter Meulen, Volker}, title = {Coronaviruses: a challenge of today and a call for extended human postmortem brain analyses}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, number = {9}, issn = {0300-9564}, doi = {10.1007/s00702-020-02230-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-314637}, pages = {1217-1228}, year = {2020}, abstract = {While there is abounding literature on virus-induced pathology in general and coronavirus in particular, recent evidence accumulates showing distinct and deleterious brain affection. As the respiratory tract connects to the brain without protection of the blood-brain barrier, SARS-CoV-2 might in the early invasive phase attack the cardiorespiratory centres located in the medulla/pons areas, giving rise to disturbances of respiration and cardiac problems. Furthermore, brainstem regions are at risk to lose their functional integrity. Therefore, long-term neurological as well as psychiatric symptomatology and eventual respective disorders cannot be excluded as evidenced from influenza-A triggered post-encephalitic Parkinsonism and HIV-1 triggered AIDS-dementia complex. From the available evidences for coronavirus-induced brain pathology, this review concludes a number of unmet needs for further research strategies like human postmortem brain analyses. SARS-CoV-2 mirroring experimental animal brain studies, characterization of time-dependent and region-dependent spreading behaviours of coronaviruses, enlightening of pathological mechanisms after coronavirus infection using long-term animal models and clinical observations of patients having had COVID-19 infection are calling to develop both protective strategies and drug discoveries to avoid early and late coronavirus-induced functional brain disturbances, symptoms and eventually disorders. To fight SARS-CoV-2, it is an urgent need to enforce clinical, molecular biological, neurochemical and genetic research including brain-related studies on a worldwide harmonized basis.}, language = {en} } @article{KremerPauwelsPozzietal.2021, author = {Kremer, Naomi I. and Pauwels, Rik W. J. and Pozzi, Nicol{\`o} G. and Lange, Florian and Roothans, Jonas and Volkmann, Jens and Reich, Martin M.}, title = {Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions}, series = {Journal of Clinical Medicine}, volume = {10}, journal = {Journal of Clinical Medicine}, number = {16}, issn = {2077-0383}, doi = {10.3390/jcm10163468}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244982}, year = {2021}, abstract = {Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated.}, language = {en} } @article{BadrMcFlederWuetal.2022, author = {Badr, Mohammad and McFleder, Rhonda L. and Wu, Jingjing and Knorr, Susanne and Koprich, James B. and H{\"u}nig, Thomas and Brotchie, Jonathan M. and Volkmann, Jens and Lutz, Manfred B. and Ip, Chi Wang}, title = {Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinson's disease mice}, series = {Journal of Neuroinflammation}, volume = {19}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-022-02685-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300580}, year = {2022}, abstract = {Background Regulatory CD4\(^+\)CD25\(^+\)FoxP3\(^+\) T cells (Treg) are a subgroup of T lymphocytes involved in maintaining immune balance. Disturbance of Treg number and impaired suppressive function of Treg correlate with Parkinson's disease severity. Superagonistic anti-CD28 monoclonal antibodies (CD28SA) activate Treg and cause their expansion to create an anti-inflammatory environment. Methods Using the AAV1/2-A53T-α-synuclein Parkinson's disease mouse model that overexpresses the pathogenic human A53T-α-synuclein (hαSyn) variant in dopaminergic neurons of the substantia nigra, we assessed the neuroprotective and disease-modifying efficacy of a single intraperitoneal dose of CD28SA given at an early disease stage. Results CD28SA led to Treg expansion 3 days after delivery in hαSyn Parkinson's disease mice. At this timepoint, an early pro-inflammation was observed in vehicle-treated hαSyn Parkinson's disease mice with elevated percentages of CD8\(^+\)CD69\(^+\) T cells in brain and increased levels of interleukin-2 (IL-2) in the cervical lymph nodes and spleen. These immune responses were suppressed in CD28SA-treated hαSyn Parkinson's disease mice. Early treatment with CD28SA attenuated dopaminergic neurodegeneration in the SN of hαSyn Parkinson's disease mice accompanied with reduced brain numbers of activated CD4\(^+\), CD8\(^+\) T cells and CD11b\(^+\) microglia observed at the late disease-stage 10 weeks after AAV injection. In contrast, a later treatment 4 weeks after AAV delivery failed to reduce dopaminergic neurodegeneration. Conclusions Our data indicate that immune modulation by Treg expansion at a timepoint of overt inflammation is effective for treatment of hαSyn Parkinson's disease mice and suggest that the concept of early immune therapy could pose a disease-modifying option for Parkinson's disease patients.}, language = {en} } @article{HaufeIsaiasPellegrinietal.2023, author = {Haufe, Stefan and Isaias, Ioannis U. and Pellegrini, Franziska and Palmisano, Chiara}, title = {Gait event prediction using surface electromyography in parkinsonian patients}, series = {Bioengineering}, volume = {10}, journal = {Bioengineering}, number = {2}, issn = {2306-5354}, doi = {10.3390/bioengineering10020212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304380}, year = {2023}, abstract = {Gait disturbances are common manifestations of Parkinson's disease (PD), with unmet therapeutic needs. Inertial measurement units (IMUs) are capable of monitoring gait, but they lack neurophysiological information that may be crucial for studying gait disturbances in these patients. Here, we present a machine learning approach to approximate IMU angular velocity profiles and subsequently gait events using electromyographic (EMG) channels during overground walking in patients with PD. We recorded six parkinsonian patients while they walked for at least three minutes. Patient-agnostic regression models were trained on temporally embedded EMG time series of different combinations of up to five leg muscles bilaterally (i.e., tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, and vastus lateralis). Gait events could be detected with high temporal precision (median displacement of <50 ms), low numbers of missed events (<2\%), and next to no false-positive event detections (<0.1\%). Swing and stance phases could thus be determined with high fidelity (median F1-score of ~0.9). Interestingly, the best performance was obtained using as few as two EMG probes placed on the left and right vastus lateralis. Our results demonstrate the practical utility of the proposed EMG-based system for gait event prediction, which allows the simultaneous acquisition of an electromyographic signal to be performed. This gait analysis approach has the potential to make additional measurement devices such as IMUs and force plates less essential, thereby reducing financial and preparation overheads and discomfort factors in gait studies.}, language = {en} } @article{PalmisanoBeccariaHaufeetal.2022, author = {Palmisano, Chiara and Beccaria, Laura and Haufe, Stefan and Volkmann, Jens and Pezzoli, Gianni and Isaias, Ioannis U.}, title = {Gait initiation impairment in patients with Parkinson's disease and freezing of gait}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {11}, issn = {2306-5354}, doi = {10.3390/bioengineering9110639}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297579}, year = {2022}, abstract = {Freezing of gait (FOG) is a sudden episodic inability to produce effective stepping despite the intention to walk. It typically occurs during gait initiation (GI) or modulation and may lead to falls. We studied the anticipatory postural adjustments (imbalance, unloading, and stepping phase) at GI in 23 patients with Parkinson's disease (PD) and FOG (PDF), 20 patients with PD and no previous history of FOG (PDNF), and 23 healthy controls (HCs). Patients performed the task when off dopaminergic medications. The center of pressure (CoP) displacement and velocity during imbalance showed significant impairment in both PDNF and PDF, more prominent in the latter patients. Several measurements were specifically impaired in PDF patients, especially the CoP displacement along the anteroposterior axis during unloading. The pattern of segmental center of mass (SCoM) movements did not show differences between groups. The standing postural profile preceding GI did not correlate with outcome measurements. We have shown impaired motor programming at GI in Parkinsonian patients. The more prominent deterioration of unloading in PDF patients might suggest impaired processing and integration of somatosensory information subserving GI. The unaltered temporal movement sequencing of SCoM might indicate some compensatory cerebellar mechanisms triggering time-locked models of body mechanics in PD.}, language = {en} } @article{PalmisanoBrandtVissanietal.2020, author = {Palmisano, Chiara and Brandt, Gregor and Vissani, Matteo and Pozzi, Nicol{\´o} G. and Canessa, Andrea and Brumberg, Joachim and Marotta, Giorgio and Volkmann, Jens and Mazzoni, Alberto and Pezzoli, Gianni and Frigo, Carlo A. and Isaias, Ioannis U.}, title = {Gait Initiation in Parkinson's Disease: Impact of Dopamine Depletion and Initial Stance Condition}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {8}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2020.00137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200801}, year = {2020}, abstract = {Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson's disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment.}, language = {en} } @phdthesis{Klaus2021, author = {Klaus, Laura-Christin}, title = {Generierung und Charakterisierung eines neuen Mausmodells des Morbus Parkinson durch AAV1/2 vermittelte {\"U}berexpression von humanem mutiertem A53T-α-Synuclein in der Substantia nigra}, doi = {10.25972/OPUS-23921}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239217}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Auch wenn die {\"A}tiopathogenese von Morbus Parkinson bis heute nicht vollst{\"a}ndig gekl{\"a}rt ist, scheint α-Synuclein (α-Syn) eine zentrale Rolle zu spielen. Die Entdeckung als genetische Ursache der Erkrankung, als Hauptbestandteil der Lewy-K{\"o}rper (LK) und seine Assoziation mit verschiedenen anderen potenziellen {\"a}tiologischen Faktoren verdeutlichen dies. Bei Ratten und Affen f{\"u}hrte eine AAV1/2-vermittelte {\"U}berexpression von A53T-α-Syn zu einer Degeneration dopaminerger Neurone in der Substantia nigra (SN), einem striatalen dopaminergen Defizit sowie Verhaltensauff{\"a}lligkeiten. In Anbetracht bestimmter Vorteile der Mausspezies, war es das Ziel dieser Dissertation - die im Rahmen eines kollaborativen Projektes mit dem Toronto Western Research Institut in Ontario, Kanada entstanden ist - dieses auf AAV1/2-A53T-α-Syn basierende Parkinson-Modell auf M{\"a}use zu {\"u}bertragen. Dazu wurde AAV1/2-A53T-α-Syn oder leerer AAV1/2-Vektor in einer Dosis von 1,5 µl mit einer Konzentration von 5,16 x 10^12 gp/ml stereotaktisch einseitig in die rechte SN von C57BL/6-wt-M{\"a}usen injiziert. {\"U}ber einen Zeitraum von 11 Wochen wurden verschiedene Verhaltensexperimente durchgef{\"u}hrt und die beiden Versuchstiergruppen miteinander verglichen. Post-mortem erfolgten verschiedene immunhistochemische Untersuchungen. Es konnte gezeigt werden, dass die einseitige Injektion von AAV1/2-A53T-α-Syn in die SN bei M{\"a}usen eine weit verbreitete {\"U}berexpression von A53T-α-Syn in dopaminergen Neuronen der SN induzierte, die innerhalb von 10 Wochen zu signifikanten fr{\"u}hen und persistierenden motorischen Verhaltensauff{\"a}lligkeiten, nigrostriataler Degeneration und Entwicklung einer Lewy-{\"a}hnlichen Pathologie f{\"u}hrte. Durch die Generierung und Charakterisierung dieses neuen Parkinson-Mausmodells, das klinische und histopathologische Merkmale der menschlichen Erkrankung widerspiegelt, besteht nun die M{\"o}glichkeit es weiterzuentwickeln und z.B. auf transgene M{\"a}use zu {\"u}bertragen, um u.a. molekulare Mechanismen der Parkinson-Krankheit zu entschl{\"u}sseln und pr{\"a}klinische Tests von krankheitsmodifizierenden Therapien durchzuf{\"u}hren.}, subject = {Parkinson-Krankheit}, language = {de} } @article{Koepsell2020, author = {Koepsell, Hermann}, title = {Glucose transporters in brain in health and disease}, series = {Pfl{\"u}gers Archiv - European Journal of Physiology}, volume = {472}, journal = {Pfl{\"u}gers Archiv - European Journal of Physiology}, issn = {0031-6768}, doi = {10.1007/s00424-020-02441-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232746}, pages = {1299-1343}, year = {2020}, abstract = {Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters incapillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-D-glucosecotransporters SGLT1 are expressed. The glucose transporters mediate uptake of D-glucose across the blood-brain barrier anddelivery of D-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demandsin response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified andproposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based onexperiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and theircerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, andSGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functionalchanges of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer's disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy defi-ciency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome}, language = {en} } @article{PasosSteigerwaldReichetal.2019, author = {Pasos, Uri E. Ramirez and Steigerwald, Frank and Reich, Martin M. and Matthies, Cordula and Volkmann, Jens and Reese, Ren{\´e}}, title = {Levodopa modulates functional connectivity in the upper beta band between bubthalamic nucleus and muscle activity in tonic and phasic motor activity patterns in Parkinson's disease}, series = {Frontiers in Human Neuroscience}, volume = {13}, journal = {Frontiers in Human Neuroscience}, number = {223}, doi = {10.3389/fnhum.2019.00223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201540}, year = {2019}, abstract = {Introduction: Striatal dopamine depletion disrupts basal ganglia function and causes Parkinson's disease (PD). The pathophysiology of the dopamine-dependent relationship between basal ganglia signaling and motor control, however, is not fully understood. We obtained simultaneous recordings of local field potentials (LFPs) from the subthalamic nucleus (STN) and electromyograms (EMGs) in patients with PD to investigate the impact of dopaminergic state and movement on long-range beta functional connectivity between basal ganglia and lower motor neurons. Methods: Eight PD patients were investigated 3 months after implantation of a deep brain stimulation (DBS)-system capable of recording LFPs via chronically-implanted leads (Medtronic, ACTIVA PC+S®). We analyzed STN spectral power and its coherence with EMG in the context of two different movement paradigms (tonic wrist extension vs. alternating wrist extension and flexion) and the effect of levodopa (L-Dopa) intake using an unbiased data-driven approach to determine regions of interest (ROI). Results: Two ROIs capturing prominent coherence within a grand average coherogram were identified. A trend of a dopamine effect was observed for the first ROI (50-150 ms after movement start) with higher STN-EMG coherence in medicated patients. Concerning the second ROI (300-500 ms after movement start), an interaction effect of L-Dopa medication and movement task was observed with higher coherence in the isometric contraction task compared to alternating movements in the medication ON state, a pattern which was reversed in L-Dopa OFF. Discussion: L-Dopa medication may normalize functional connectivity between remote structures of the motor system with increased upper beta coherence reflecting a physiological restriction of the amount of information conveyed between remote structures. This may be necessary to maintain simple movements like isometric contraction. Our study adds dynamic properties to the complex interplay between STN spectral beta power and the nucleus' functional connectivity to remote structures of the motor system as a function of movement and dopaminergic state. This may help to identify markers of neuronal activity relevant for more individualized programming of DBS therapy.}, language = {en} } @article{PoetterNergerReeseSteigerwaldetal.2017, author = {P{\"o}tter-Nerger, Monika and Reese, Rene and Steigerwald, Frank and Heiden, Jan Arne and Herzog, Jan and Moll, Christian K. E. and Hamel, Wolfgang and Ramirez-Pasos, Uri and Falk, Daniela and Mehdorn, Maximilian and Gerloff, Christian and Deuschl, G{\"u}nther and Volkmann, Jens}, title = {Movement-Related Activity of Human Subthalamic Neurons during a Reach-to-Grasp Task}, series = {Frontiers in Human Neuroscience}, volume = {11}, journal = {Frontiers in Human Neuroscience}, number = {436}, doi = {10.3389/fnhum.2017.00436}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170361}, year = {2017}, abstract = {The aim of the study was to record movement-related single unit activity (SUA) in the human subthalamic nucleus (STN) during a standardized motor task of the upper limb. We performed microrecordings from the motor region of the human STN and registered kinematic data in 12 patients with Parkinson's disease (PD) undergoing deep brain stimulation surgery (seven women, mean age 62.0 ± 4.7 years) while they intraoperatively performed visually cued reach-to-grasp movements using a grip device. SUA was analyzed offline in relation to different aspects of the movement (attention, start of the movement, movement velocity, button press) in terms of firing frequency, firing pattern, and oscillation. During the reach-to-grasp movement, 75/114 isolated subthalamic neurons exhibited movement-related activity changes. The largest proportion of single units showed modulation of firing frequency during several phases of the reach and grasp (polymodal neurons, 45/114), particularly an increase of firing rate during the reaching phase of the movement, which often correlated with movement velocity. The firing pattern (bursting, irregular, or tonic) remained unchanged during movement compared to rest. Oscillatory single unit firing activity (predominantly in the theta and beta frequency) decreased with movement onset, irrespective of oscillation frequency. This study shows for the first time specific, task-related, SUA changes during the reach-to-grasp movement in humans.}, language = {en} } @article{KarikariMcFlederRibechinietal.2022, author = {Karikari, Akua A. and McFleder, Rhonda L. and Ribechini, Eliana and Blum, Robert and Bruttel, Valentin and Knorr, Susanne and Gehmeyr, Mona and Volkmann, Jens and Brotchie, Jonathan M. and Ahsan, Fadhil and Haack, Beatrice and Monoranu, Camelia-Maria and Keber, Ursula and Yeghiazaryan, Rima and Pagenstecher, Axel and Heckel, Tobias and Bischler, Thorsten and Wischhusen, J{\"o}rg and Koprich, James B. and Lutz, Manfred B. and Ip, Chi Wang}, title = {Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson's disease mice}, series = {Brain, Behavior, and Immunity}, volume = {101}, journal = {Brain, Behavior, and Immunity}, doi = {10.1016/j.bbi.2022.01.007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300600}, pages = {194 -- 210}, year = {2022}, abstract = {Background Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson's disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model. Methods We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)\(^{-/-}\) mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4\(^{+}\)/CD8\(^{-}\), CD4\(^{-}\)/CD8\(^{+}\), or CD4\(^{+}\)/CD8\(^{+}\) (JHD\(^{-/-}\)) mice into the RAG-1\(^{-/-}\) mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized. Results AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68-78) and surrounding the pathogenically relevant S129 (120-134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration. Conclusions Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology.}, language = {en} } @article{GrotemeyerMcFlederWuetal.2022, author = {Grotemeyer, Alexander and McFleder, Rhonda Leah and Wu, Jingjing and Wischhusen, J{\"o}rg and Ip, Chi Wang}, title = {Neuroinflammation in Parkinson's disease - putative pathomechanisms and targets for disease-modification}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.878771}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274665}, year = {2022}, abstract = {Parkinson's disease (PD) is a progressive and debilitating chronic disease that affects more than six million people worldwide, with rising prevalence. The hallmarks of PD are motor deficits, the spreading of pathological α-synuclein clusters in the central nervous system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-acting drug or procedure has been successfully established for clinical use. Various pathways contributing to dopaminergic neuron loss in PD have been investigated and described to interact with the innate and adaptive immune system. We discuss the possible contribution of interconnected pathways related to the immune response, focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide an overview of clinical trials targeting neuroinflammation in PD.}, language = {en} } @article{DeebGiordanoRossietal.2016, author = {Deeb, Wissam and Giordano, James J. and Rossi, Peter J. and Mogilner, Alon Y. and Gunduz, Aysegul and Judy, Jack W. and Klassen, Bryan T. and Butson, Christopher R. and Van Horne, Craig and Deny, Damiaan and Dougherty, Darin D. and Rowell, David and Gerhardt, Greg A. and Smith, Gwenn S. and Ponce, Francisco A. and Walker, Harrison C. and Bronte-Stewart, Helen M. and Mayberg, Helen S. and Chizeck, Howard J. and Langevin, Jean-Philippe and Volkmann, Jens and Ostrem, Jill L. and Shute, Jonathan B. and Jimenez-Shahed, Joohi and Foote, Kelly D. and Wagle Shukla, Aparna and Rossi, Marvin A. and Oh, Michael and Pourfar, Michael and Rosenberg, Paul B. and Silburn, Peter A. and de Hemptine, Coralie and Starr, Philip A. and Denison, Timothy and Akbar, Umer and Grill, Warren M. and Okun, Michael S.}, title = {Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies}, series = {Frontiers in Integrative Neuroscience}, volume = {10}, journal = {Frontiers in Integrative Neuroscience}, number = {38}, doi = {10.3389/fnint.2016.00038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168493}, year = {2016}, abstract = {This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinical practice, formation of registries, and issues involving the use of DBS in the treatment of Tourette Syndrome. Next, advances in the use of neuroimaging and electrochemical markers to enhance DBS specificity were addressed. Updates on ongoing use and developments of DBS for the treatment of Parkinson's disease, essential tremor, Alzheimer's disease, depression, post-traumatic stress disorder, obesity, addiction were presented, and progress toward innovation(s) in closed-loop applications were discussed. Each section of these proceedings provides updates and highlights of new information as presented at this year's international Think Tank, with a view toward current and near future advancement of the field.}, language = {en} } @article{VolkmannAlbaneseAntoninietal.2013, author = {Volkmann, Jens and Albanese, Alberto and Antonini, Angelo and Chaudhuri, K. Ray and Clarke, Karl E. and de Bie, Rob M. A. and Deuschl, G{\"u}nther and Eggert, Karla and Houeto, Jean-Luc and Kulisevsky, Jaime and Nyholm, Dag and Odin, Per and Ostergaard, Karen and Poewe, Werner and Pollak, Pierre and Rabey, Jose Martin and Rascol, Olivier and Ruzicka, Evzen and Samuel, Michael and Speelman, Hans and Sydow, Olof and Valldeoriola, Francesc and van der Linden, Chris and Oertel, Wolfgang}, title = {Selecting deep brain stimulation or infusion therapies in advanced Parkinson's disease: an evidence-based review}, series = {Journal of Neurology}, volume = {260}, journal = {Journal of Neurology}, doi = {10.1007/s00415-012-6798-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132373}, pages = {2701-2714}, year = {2013}, abstract = {Motor complications in Parkinson's disease (PD) result from the short half-life and irregular plasma fluctuations of oral levodopa. When strategies of providing more continuous dopaminergic stimulation by adjusting oral medication fail, patients may be candidates for one of three device-aided therapies: deep brain stimulation (DBS), continuous subcutaneous apomorphine infusion, or continuous duodenal/jejunal levodopa/carbidopa pump infusion (DLI). These therapies differ in their invasiveness, side-effect profile, and the need for nursing care. So far, very few comparative studies have evaluated the efficacy of the three device-aided therapies for specific motor problems in advanced PD. As a result, neurologists currently lack guidance as to which therapy could be most appropriate for a particular PD patient. A group of experts knowledgeable in all three therapies reviewed the currently available literature for each treatment and identified variables of clinical relevance for choosing one of the three options such as type of motor problems, age, and cognitive and psychiatric status. For each scenario, pragmatic and (if available) evidence-based recommendations are provided as to which patients could be candidates for either DBS, DLI, or subcutaneous apomorphine.}, language = {en} } @article{CanessaPozziArnulfoetal.2016, author = {Canessa, Andrea and Pozzi, Nicol{\`o} G. and Arnulfo, Gabriele and Brumberg, Joachim and Reich, Martin M. and Pezzoli, Gianni and Ghilardi, Maria F. and Matthies, Cordula and Steigerwald, Frank and Volkmann, Jens and Isaias, Ioannis U.}, title = {Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {611}, doi = {10.3389/fnhum.2016.00611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164061}, year = {2016}, abstract = {Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson's disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement.}, language = {en} } @article{PozziPalmisanoReichetal.2022, author = {Pozzi, Nicol{\´o} G. and Palmisano, Chiara and Reich, Martin M. and Capetian, Philip and Pacchetti, Claudio and Volkmann, Jens and Isaias, Ioannis U.}, title = {Troubleshooting gait disturbances in Parkinson's disease with deep brain stimulation}, series = {Frontiers in Human Neuroscience}, volume = {16}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2022.806513}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274007}, year = {2022}, abstract = {Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.}, language = {en} } @article{WernerMarcusSheikhbahaeietal.2018, author = {Werner, Rudolf A. and Marcus, Charles and Sheikhbahaei, Sara and Solnes, Lilja B. and Leal, Jeffrey P. and Du, Yong and Rowe, Steven P. and Higuchi, Takahiro and Buck, Andreas K. and Lapa, Constantin and Javadi, Mehrbod S.}, title = {Visual and Semiquantitative Accuracy in Clinical Baseline 123I-Ioflupane SPECT/CT Imaging}, series = {Clinical Nuclear Medicine}, volume = {44}, journal = {Clinical Nuclear Medicine}, number = {1}, issn = {1536-0229}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168181}, year = {2018}, abstract = {PURPOSE: We aimed to (a) elucidate the concordance of visual assessment of an initial I-ioflupane scan by a human interpreter with comparison to results using a fully automatic semiquantitative method and (b) to assess the accuracy compared to follow-up (f/u) diagnosis established by movement disorder specialists. METHODS: An initial I-ioflupane scan was performed in 382 patients with clinically uncertain Parkinsonian syndrome. An experienced reader performed a visual evaluation of all scans independently. The findings of the visual read were compared with semiquantitative evaluation. In addition, available f/u clinical diagnosis (serving as a reference standard) was compared with results of the human read and the software. RESULTS: When comparing the semiquantitative method with the visual assessment, discordance could be found in 25 (6.5\%) of 382 of the cases for the experienced reader (ĸ = 0.868). The human observer indicated region of interest misalignment as the main reason for discordance. With neurology f/u serving as reference, the results of the reader revealed a slightly higher accuracy rate (87.7\%, ĸ = 0.75) compared to semiquantification (86.2\%, ĸ = 0.719, P < 0.001, respectively). No significant difference in the diagnostic performance of the visual read versus software-based assessment was found. CONCLUSIONS: In comparison with a fully automatic semiquantitative method in I-ioflupane interpretation, human assessment obtained an almost perfect agreement rate. However, compared to clinical established diagnosis serving as a reference, visual read seemed to be slightly more accurate as a solely software-based quantitative assessment.}, subject = {SPECT}, language = {en} }