@article{StepniakKaestnerPoggietal.2015, author = {Stepniak, Beata and K{\"a}stner, Anne and Poggi, Giulia and Mitjans, Marina and Begemann, Martin and Hartmann, Annette and Van der Auwera, Sandra and Sananbenesi, Farahnaz and Kr{\"u}ger-Burg, Dilja and Matuszko, Gabriela and Brosi, Cornelia and Homuth, Georg and V{\"o}lzke, Henry and Benseler, Fritz and Bagni, Claudia and Fischer, Utz and Dityatev, Alexander and Grabe, Hans-J{\"o}rgen and Rujescu, Dan and Fischer, Andre and Ehrenreich, Hannelore}, title = {Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes}, series = {EMBO Molecular Medicine}, volume = {7}, journal = {EMBO Molecular Medicine}, number = {12}, doi = {10.15252/emmm.201505696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136893}, pages = {1565-1579}, year = {2015}, abstract = {Fragile X syndrome (FXS) is mostly caused by a CGG triplet expansion in the fragile X mental retardation 1 gene (FMR1). Up to 60\% of affected males fulfill criteria for autism spectrum disorder (ASD), making FXS the most frequent monogenetic cause of syndromic ASD. It is unknown, however, whether normal variants (independent of mutations) in the fragile X gene family (FMR1, FXR1, FXR2) and in FMR2 modulate autistic features. Here, we report an accumulation model of 8 SNPs in these genes, associated with autistic traits in a discovery sample of male patients with schizophrenia (N = 692) and three independent replicate samples: patients with schizophrenia (N = 626), patients with other psychiatric diagnoses (N = 111) and a general population sample (N = 2005). For first mechanistic insight, we contrasted microRNA expression in peripheral blood mononuclear cells of selected extreme group subjects with high-versus low-risk constellation regarding the accumulation model. Thereby, the brain-expressed miR-181 species emerged as potential "umbrella regulator", with several seed matches across the fragile X gene family and FMR2. To conclude, normal variation in these genes contributes to the continuum of autistic phenotypes.}, language = {en} } @article{TolayBuchberger2021, author = {Tolay, Nazife and Buchberger, Alexander}, title = {Comparative profiling of stress granule clearance reveals differential contributions of the ubiquitin system}, series = {Life Science Alliance}, volume = {4}, journal = {Life Science Alliance}, number = {5}, doi = {10.26508/lsa.202000927}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259810}, pages = {e202000927}, year = {2021}, abstract = {Stress granules (SGs) are cytoplasmic condensates containing untranslated mRNP complexes. They are induced by various proteotoxic conditions such as heat, oxidative, and osmotic stress. SGs are believed to protect mRNPs from degradation and to enable cells to rapidly resume translation when stress conditions subside. SG dynamics are controlled by various posttranslationalmodifications, but the role of the ubiquitin system has remained controversial. Here, we present a comparative analysis addressing the involvement of the ubiquitin system in SG clearance. Using high-resolution immuno-fluorescence microscopy, we found that ubiquitin associated to varying extent with SGs induced by heat, arsenite, H2O2, sorbitol, or combined puromycin and Hsp70 inhibitor treatment. SG-associated ubiquitin species included K48- and K63-linked conjugates, whereas free ubiquitin was not significantly enriched. Inhibition of the ubiquitin activating enzyme, deubiquitylating enzymes, the 26S proteasome and p97/VCP impaired the clearance of arsenite- and heat-induced SGs, whereas SGs induced by other stress conditions were little affected. Our data underline the differential involvement of the ubiquitin system in SG clearance, a process important to prevent the formation of disease-linked aberrant SGs.}, language = {en} }