@phdthesis{Brendel2018, author = {Brendel, Harald}, title = {W{\"a}rmetransport in keramischen Faserisolationen bei hohen Temperaturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Das Ziel dieser Arbeit ist eine umfassende numerische und experimentelle Charakterisierung des W{\"a}rmetransports in oxidkeramischen Faserisolationen im Hochtemperaturbereich. Zugleich sollen neue Konzepte f{\"u}r eine optimierte technische Auslegung von Faserisolationen erarbeitet werden. Oxidkeramiken zeigen im Infrarotbereich ein semitransparentes Verhalten. Das bedeutet, ein Teil der Strahlung gelangt durch die Probe, ohne gestreut oder absorbiert zu werden. Durch die Ausgestaltung als disperses Medium mit Abmessungen der Fasern im \$\mu m\$ Bereich wird jedoch eine starke Wechselwirkung mit infraroter Lichtstrahlung erzeugt. Man befindet sich im optischen Resonanzbereich. Technisch relevante Faserisolationen besitzen eine Rohdichte zwischen \$50 \mathrm{kg/m^3}\$ und \$700 \mathrm{kg/m^3}\$ und k{\"o}nnen als optisch dichtes Medium betrachtet werden. Eine Optimierung hinsichtlich der D{\"a}mmwirkung gegen W{\"a}rmestrahlung bedeutet eine massenspezifische Maximierung des Lichtstreuverm{\"o}gens im relevanten Wellenl{\"a}ngenbereich. Hierzu werden in einer numerischen Studie keramische Hohlfaserisolationen mit konventionellen Fasern verglichen. Diese Abhandlung unter Ber{\"u}cksichtigung anwendungsnaher Aspekte gelangt zu der Schlussfolgerung, dass die Strahlungsw{\"a}rmestromdichte in Hohlfaserisolationen, im Vergleich zu konventionellen Isolationen, signifikant erniedrigt wird. Hinsichtlich der Gesamtw{\"a}rmeleitf{\"a}higkeit ist eine Reduzierung um den Faktor zwei zu erwarten. \\ Trotz moderner Rechner ist die Anwendung der vollen Maxwellschen Streutheorie, insbesondere im Rahmen von Optimierungsaufgaben mehrschichtiger Streuk{\"o}rper, ein zeitaufwendiges Unterfangen. Um sinnvolle Parameterkonfigurationen bereichsweise eingrenzen zu k{\"o}nnen, wird eine N{\"a}herungsmethode f{\"u}r die Lichtstreuung an mehrschichtigen Zylindern weiterentwickelt und mit der vollst{\"a}ndigen Maxwellschen Streutheorie verglichen. Es zeigt sich, dass das Modell f{\"u}r kleine bis moderate Brechungsindizes sehr gute Vorhersagekraft besitzt und auch zur n{\"a}herungsweisen Berechnung der Streueffizienzen f{\"u}r r{\"a}umlich isotrop angeordnete Zylinder herangezogen werden kann. \\ Neben den numerischen Studien wird im experimentellen Teil dieser Arbeit eine kommerzielle Faserisolierung aus Aluminiumoxid hinsichtlich ihrer W{\"a}rmetransporteigenschaften charakterisiert. Die optischen Transportparameter Albedo und Extinktion werden mittels etablierter Messmethoden bestimmt. Bei bekannter Faserdurchmesserverteilung k{\"o}nnen diese Messwerte dann mit den theoretischen Vorhersagen der Maxwellschen Streutheorie verglichen werden.\\ Um technische Optimierungsmaßnahmen experimentell zu verifizieren, besteht die Notwendigkeit, die Temperaturleitf{\"a}higkeit bzw. die W{\"a}rmeleitf{\"a}higkeit auch bei hohen Temperaturen oberhalb von \$1000^\mathrm{o}\mathrm{C}\$ zuverl{\"a}ssig bestimmen zu k{\"o}nnen. Zu diesem Zweck wird ein Versuchsaufbau realisiert, um in diesem Temperaturbereich erstmals die sogenannte Thermal-Wave-Analyse anzuwenden. Durch Abgleich mit einem gekoppelten W{\"a}rmetransportmodell und einem etablierten Messverfahren wird die besondere Eignung der Thermal-Wave-Analyse f{\"u}r ber{\"u}hrungsfreie Hochtemperaturmessungen gezeigt.}, subject = {W{\"a}rme{\"u}bertragung}, language = {de} } @phdthesis{Fiedler2018, author = {Fiedler, Sebastian}, title = {Strukturelle und elektronische Zusammenh{\"a}nge von inversionsasymmetrischen Halbleitern mit starker Spin-Bahn-Kopplung; BiTeX (X =I, Br, Cl)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155624}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabh{\"a}ngigen Spinaufspaltung der Bandstruktur f{\"u}hrt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabh{\"a}ngigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplement{\"a}rer, oberfl{\"a}chensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie (STM) und Photoelektronenspektroskopie (PES) - an geeigneten Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zus{\"a}tzliche Experimente werden an d{\"u}nnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgef{\"u}hrt. Die inversionsasymmetrische Kristallstruktur in BiTeX f{\"u}hrt zur Existenz zweier nicht-{\"a}quivalenter Oberfl{\"a}chen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberfl{\"a}chen gespaltener Einkristalle belegen f{\"u}r BiTeI(0001) eine Koexistenz beider Terminierungen auf einer L{\"a}ngenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zur{\"u}ckf{\"u}hren lassen. Diese Dom{\"a}nen sind groß genug, um eine vollst{\"a}ndig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei r{\"a}umlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen L{\"a}ngenskala aus. Atomar aufgel{\"o}ste STM-Messungen zeigen f{\"u}r die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberfl{\"a}chen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativit{\"a}t der Halogene resultiert in verschieden starken Ladungs{\"u}berg{\"a}ngen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberfl{\"a}cheneigenschaften ist durch die Bedampfung mit Cs m{\"o}glich, wobei eine {\"A}nderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfl{\"a}che durch Heizen im Vakuum, bewirkt dies eine Ver{\"a}nderung der Bandstruktur in zwei Schritten. So f{\"u}hrt zun{\"a}chst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberfl{\"a}chenzust{\"a}nde hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfl{\"a}che - im Volumen bleibt die inversionsasymmetrische Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von D{\"u}nnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Ver{\"a}nderung der Morphologie und elektronischen Struktur in Abh{\"a}ngigkeit von St{\"o}chiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der D{\"u}nnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberfl{\"a}chenzustands auf.}, subject = {Rashba-Effekt}, language = {de} } @phdthesis{Kampf2018, author = {Kampf, Thomas}, title = {Quantifizierung myokardialer Mikrostruktur und Perfusion mittels longitudinaler NMR Relaxation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174261}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Ziel der Arbeit war es die Quantifizierung funktioneller bzw. mikrostruktureller Parameter des Herzmuskels mit Hilfe T1-basierter Methoden zu verbessern. Diese Methoden basieren darauf, die gew{\"u}nschte Information durch eine geeignete Pr{\"a}paration der Magnetisierung bzw. durch die Gabe von Kontrastmittel in den Zeitverlauf der longitudinalen Relaxation zu kodieren. Aus der {\"A}nderung der Relaxationszeit l{\"a}ßt sich dann die gew{\"u}nschte Information bestimmen. Daf{\"u}r sollte sowohl der Einfluß der Anatomie als auch derjenige der Meßmethodik auf die Bestimmung der longitudinalen Relaxationszeit und damit auf die Quantifizierung der Funktion bzw. Mikrostrukturparameter untersucht werden. Speziell der Einfluß der Bildgebungssequenz f{\"u}hrt dazu, daß nur eine scheinbare Relaxationszeit gemessen wird. W{\"a}hrend dies keinen Einfluß auf die T1-basierte Bestimmung der untersuchten Mikrostrukturparameter hatte, ergab sich f{\"u}r die Perfusionsquantifizierung eine deutliche Abh{\"a}ngigkeit von den Parametern der verwendeten IRLL-Sequenz. Um diesen Einfluß gerecht zu werden, wurden an die Meßmethodik angepaßte Gleichungen zur Bestimmung der Perfusion gefunden mit denen die systematischen Abweichungen korrigiert werden k{\"o}nnen. Zus{\"a}tzlich reduzieren die angepaßten Gleichungen die Anforderungen bez{\"u}glich der Inversionsqualit{\"a}t im schichtselektiven Experiment. Dies wurde in einem weiteren Projekt bei der Bestimmung der Nierenperfusion im Mausmodell ausgenutzt. Neben der Untersuchung der Auswirkungen der Meßmethode wurde auch der Einfluß der anatomischen Besonderheiten des Blutkreislaufs am Herzen auf die Parameterquantifizierung mittels T1-basierter Methoden untersucht. Es konnte gezeigt werden, daß auf Grund der Anatomie des Herzens bei typischen Orientierungen der Bildgebungsschicht, auch bei der schichtselektiven Inversionspr{\"a}paration der Magnetisierung des Herzmuskels ein Anteil des Blutpools invertiert wird. Daraus folgt, daß die vereinfachende Annahme, nach welcher bei schichtselektiver Pr{\"a}paration in Folge von Perfusion nur Blut mit Gleichgewichtsmagnetisierung den Herzmuskel erreicht, nicht erf{\"u}llt ist. Es konnte gezeigt werden, daß dies bei Perfusion zu einer deutlichen Untersch{\"a}tzung der berechneten Perfusionswertes f{\"u}hrt. Um mit diesem Problem umgehen zu k{\"o}nnen, wurde aufbauend auf einem vereinfachten Modell der zeitlichen Entwicklung der Blutmagnetisierung eine Korrektur f{\"u}r die Bestimmung der Perfusionswerte gefunden welche den Einfluß der anatomischen Besonderheiten ber{\"u}cksichtigt. Das f{\"u}r die Perfusionskorrektur eingef{\"u}hrte Model prognostiziert ebenso, daß auch bei schichtselektiver Inversion die T1-basierte Bestimmung der untersuchten Mikrostrukturparameter von der Perfusion abh{\"a}ngig wird und eine systematische {\"U}bersch{\"a}tzung der quantifizierten Werte verursacht. Da die Perfusion im Kleintier deutlich h{\"o}her ist als im Menschen, ist dieser Einfluß besonders in der pr{\"a}klinischen Forschung zu beachten. So k{\"o}nnen dort allein durch verminderte Perfusion deutliche {\"A}nderungen in den bestimmten Werten der Mikrostrukturparameter erzeugt werden, welche zu einer fehlerhaften Interpretation der Ergebnisse f{\"u}hren und somit ein falsches Bild f{\"u}r die Vorg{\"a}nge im Herzmuskel suggerieren. Dabei best{\"a}tigt der Vergleich mit experimentellen Ergebnissen aus der Literatur die Vorhersagen f{\"u}r das Rattenmodell. Beim Menschen ist der prognostizierte Effekt deutlich kleiner. Der prognostizierte Fehler bspw. im RBV-Wert liegt in diesem Fall bei etwa 10\% und wird {\"u}blicherweise in der aktuellen Forschung vernachl{\"a}ssigt. Inwieweit dies in er klinischen Forschung gerechtfertigt ist, muß in weiteren Untersuchungen gekl{\"a}rt werden. Den untersuchten Methoden zur Bestimmung von funktionellen und mikrostrukturellen Parametern ist gemein, daß sie eine exakte Quantifizierung der longitudinalen Relaxationszeit T1 ben{\"o}tigen. Dabei ist im Kleintierbereich die klassische IRLL-Methode als zuverl{\"a}ssige Sequenz zur T1-Quantifizierung etabliert. In der klinischen Bildgebung werden auf Grund der unterschiedlichen Zeitskalen und anderer technischer Voraussetzungen andere Anforderungen an die Datenakquisition gestellt. Dabei hat in den letzten Jahren die MOLLI-Sequenz große Verbreitung gefunden. Sie ist eine Abwandlung der IRLL-Sequenz, bei der mit einer bSSFP-Bildgebungssequenz getriggert ganze Bilder w{\"a}hrend eines Herzschlages aufgenommen werden. Die MOLLI-Sequenz reagiert dabei empfindlich auf die Wartezeiten zwischen den einzelnen Transienten. Um mit diese Problematik in den Griff zu bekommen und gleichzeitig die Meßzeit verk{\"u}rzen zu k{\"o}nnen wurde eine neue Methode zum Fitten der Daten entwickelt, welche die Abh{\"a}ngigkeit der scheinbaren Relaxationszeit von der Wartezeit zwischen den einzelnen Transienten, sowie der mittleren Herzrate fast vollst{\"a}ndig eliminiert. Diese Methode liefert f{\"u}r das ganze klinisch Spektrum an erwarteten T1-Zeiten, vor und nach Kontrastmittelgabe, stabile Ergebnisse und erlaubte ein deutliche Verk{\"u}rzung der Meßzeit, ohne die Anzahl der aufgenommenen Meßzeitpunkte zu reduzieren. Dies wurde in einer initialen klinischen Studie genutzt, um ECV-Werte in Patienten zu bestimmen. Ein Nachteil der Verwendung der MOLLI-Sequenz ist, daß nur die scheinbare Relaxationszeit aus den Fit der Meßdaten bestimmt wird. Die standardm{\"a}ßig genutzte Korrektur benutzt aber dem gefitteten Wert der Gleichgewichtsmagnetisierung um den wahren T1-Wert zu bestimmen. Somit ist es f{\"u}r die Bestimmung des T1-Wertes notwendig, die Qualit{\"a}t der Inversionspr{\"a}paration zu kennen. Auf Basis der neuen Fitmethode wurde eine Anpassung der MOLLI-Sequenz demonstriert, welche die Bestimmung der Gleichgewichtsmagnetisierung unabh{\"a}ngig von der Qualit{\"a}t der Inversionspr{\"a}paration erlaubt. Daf{\"u}r verl{\"a}ngert sich die Meßdauer lediglich um einen Herzschlag um in geeigneter Weise ein zus{\"a}tzliches Bild aufnehmen zu k{\"o}nnen. Abschließend wurde in dieser Arbeit der Signal-Zeit-Verlauf der MOLLI-Sequenz eingehend theoretische untersucht um ein besseres Verst{\"a}ndnis der getriggerten IRLL-Sequenzen zu entwickeln. In diesem Zusammenhang konnte eine einfache Interpretation der scheinbaren Relaxationszeit gefunden werden. Ebenso konnte erkl{\"a}rt werden, warum die f{\"u}r ungetriggerte IRLL-Sequenzen abgeleitete Korrekturgleichung auch im getriggerten Fall erstaunlich gute Ergebnisse liefert. Weiterhin konnten Fehlerquellen f{\"u}r die verbleibenden Abweichungen identifiziert werden, welche als Ausgangspunkt f{\"u}r die Ableitung verbesserter Korrekturgleichungen genutzt werden k{\"o}nnen.}, subject = {Kernspintomographie}, language = {de} } @phdthesis{Pfenning2018, author = {Pfenning, Andreas Theo}, title = {Optoelektronische Transportspektroskopie an Resonanztunneldioden-Fotodetektoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163205}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit optoelektronischer Transportspektroskopie verschiedener Resonanztunneldioden (RTDs). Die Arbeit ist thematisch in zwei Schwerpunktee untergliedert. Im ersten Schwerpunkt werden anhand GaAs-basierter RTD-Fotosensoren f{\"u}r den Telekommunikationswellenl{\"a}ngenbereich um 1,3 µm die Akkumulationsdynamiken photogenerierter Minorit{\"a}tsladungstr{\"a}ger und deren Wirkung auf den RTD-Tunnelstrom untersucht. Im zweiten Schwerpunkt werden GaSb-basierte Al(As)Sb/GaSb-Doppelbarrieren-Quantentrog-RTDs in Hinblick auf ihren Raumtemperaturbetrieb entwickelt und erforscht. Diese legen den Grundstein f{\"u}r die sp{\"a}tere Realisation von RTD-Fotodetektoren im mittleren infraroten (MIR) Spektralbereich. Im Folgenden ist eine kurze inhaltliche Zusammenfassung der einzelnen Kapitel gegeben. Kapitel 1 leitet vor dem Hintergrund eines stark steigenden Bedarfs an verl{\"a}sslichen und sensitiven Fotodetektoren f{\"u}r Telekommunikationsanwendungen sowie f{\"u}r die optische Molek{\"u}l- und Gasspektroskopie in das {\"u}bergeordnete Thema der RTD-Fotodetektoren ein. Kapitel 2 erl{\"a}utert ausgew{\"a}hlte physikalische und technische Grundlagen zu RTD-Fotodetektoren. Ausgehend von einem kurzem {\"U}berblick zu RTDs, werden aktuelle Anwendungsgebiete aufgezeigt und die physikalischen Grundlagen elektrischen Transports in RTDs diskutiert. Anschließend werden Grundlagen, Definitionen und charakteristische Kenngr{\"o}ßen optischer Detektoren und Sensoren definiert. Abschließend werden die physikalischen Grundlagen zum Fotostrom in RTDs beschrieben. In Kapitel 3 RTD-Fotosensor zur Lichtdetektion bei 1,3 µm werden AlGaAs/GaAs-Doppelbarrieren-Quantentrog-Resonanztunneldioden (DBQW-RTDs) mit gitterangepasster, quatern{\"a}rer GaInNAs-Absorptionsschicht als Raumtemperatur-Fotodetektoren f{\"u}r den nahen infraroten (NIR) Spektralbereich bei der Telekommunikationswellenl{\"a}nge von λ=1,3 µm untersucht. RTDs sind photosensitive Halbleiterbauteile, die innerhalb der vergangenen Jahre aufgrund ihrer hohen Fotosensitivit{\"a}t und F{\"a}higkeit selbst einzelne Photonen zu detektieren, ein beachtliches Interesse geweckt haben. Die RTD-Fotosensitivit{\"a}t basiert auf einer Coulomb-Wechselwirkung photogenerierter und akkumulierter Ladungstr{\"a}ger. Diese ver{\"a}ndern das lokale elektrostatische Potential und steuern so einen empfindlichen Resonanztunnelstrom. Die Kenntnis der zugrundeliegenden physikalischen Parameter und deren Spannungsabh{\"a}ngigkeit ist essentiell, um optimale Arbeitspunkte und Bauelementdesigns zu identifizieren. Unterkapitel 3.1 gibt einen {\"U}berblick {\"u}ber das Probendesign der untersuchten RTD-Fotodetektoren, deren Fabrikationsprozess sowie eine Erl{\"a}uterung des Fotodetektionsmechanismus. {\"U}ber Tieftemperatur-Elektrolumineszenz-Spektroskopie wird die effektive RTD-Quantentrog-Breite zu d_DBQW≃3,4 nm bestimmt. Die Quantisierungsenergien der Elektron- und Schwerloch-Grundzust{\"a}nde ergeben sich zu E_Γ1≈144 meV und E_hh1≈39 meV. Abschließend wird der in der Arbeit verwendeten Messaufbau skizziert. In Unterkapitel 3.2 werden die physikalischen Parameter, die die RTD-Fotosensitivit{\"a}t bestimmen, auf ihre Spannungsabh{\"a}ngigkeit untersucht. Die Fotostrom-Spannungs-Kennlinie des RTD-Fotodetektors ist nichtlinear und {\"u}ber drei spannungsabh{\"a}ngige Parametern gegeben: der RTD-Quanteneffizienz η(V), der mittleren Lebensdauer photogenerierter und akkumulierter Minorit{\"a}tsladungstr{\"a}ger (L{\"o}cher) τ(V) und der RTD-I(V)-Kennlinie im Dunkeln I_dark (V). Die RTD Quanteneffizienz η(V) kann {\"u}ber eine Gaußsche-Fehlerfunktion modelliert werden, welche beschreibt, dass Lochakkumulation erst nach {\"U}berschreiten einer Schwellspannung stattfindet. Die mittlere Lebensdauer τ(V) f{\"a}llt exponentiell mit zunehmender Spannung V ab. {\"U}ber einen Vergleich mit thermisch limitierten Lebensdauern in Quantentr{\"o}gen k{\"o}nnen Leitungsband- und Valenzband-Offset zu Q_C \≈0,55 und Q_V≈0,45 abgesch{\"a}tzt werden. Basierend auf diesen Ergebnissen wird ein Modell f{\"u}r die Fotostrom-Spannungs-Kennlinie erstellt, das eine elementare Grundlage f{\"u}r die Charakterisierung von RTD-Photodetektoren bildet. In Unterkapitel 3.3 werden die physikalischen Parameter, die die RTD-Fotosensitivit{\"a}t beschr{\"a}nken, detailliert auf ihre Abh{\"a}ngigkeit gegen{\"u}ber der einfallenden Lichtleistung untersucht. Nur f{\"u}r kleine Lichtleistungen wird eine konstante Sensitivit{\"a}t von S_I=5,82×〖10〗^3 A W-1 beobachtet, was einem Multiplikationsfaktor von M=3,30×〖10〗^5 entspricht. F{\"u}r steigende Lichtleistungen f{\"a}llt die Sensitivit{\"a}t um mehrere Gr{\"o}ßenordnungen ab. Die abfallende, nichtkonstante Sensitivit{\"a}t ist maßgeblich einer Reduktion der mittleren Lebensdauer τ zuzuschreiben, die mit steigender Lochpopulation exponentiell abf{\"a}llt. In Kombination mit den Ergebnissen aus Unterkapitel 3.2 wird ein Modell der RTD-Fotosensitivit{\"a}t vorgestellt, das die Grundlage einer Charakterisierung von RTD-Fotodetektoren bildet. Die Ergebnisse k{\"o}nnen genutzt werden, um die kritische Lichtleistung zu bestimmen, bis zu der der RTD-Fotodetektor mit konstanter Sensitivit{\"a}t betrieben werden kann, oder um den idealen Arbeitspunkt f{\"u}r eine minimale rausch{\"a}quivalente Leistung (NEP) zu identifizieren. Dieser liegt f{\"u}r eine durch theoretisches Schrotrauschen limitierte RTD bei einem Wert von NEP=1,41×〖10〗^(-16) W Hz-1/2 bei V=1,5 V. In Kapitel 4 GaSb-basierte Doppelbarrieren-RTDs werden unterschiedliche Al(As)Sb/GaSb-DBQW-RTDs auf ihre elektrische Transporteigenschaften untersucht und erstmalig resonantes Tunneln von Elektronen bei Raumtemperatur in solchen Resonanztunnelstrukturen demonstriert. Unterkapitel 4.1 beschreibt den Wachstums- und der Fabrikationsprozess der untersuchten AlAsSb/GaSb-DBQW-RTDs. In Unterkapitel 4.2 wird Elektronentransport durch eine AlSb/GaSb-DBQW-Resonanztunnelstruktur untersucht. Bei einer Temperatur von T=4,2 K konnte resonantes Tunneln mit bisher unerreicht hohen Resonanz-zu-Talstrom-Verh{\"a}ltnisse von PVCR=20,4 beobachtet werden. Dies wird auf die exzellente Qualit{\"a}t des Halbleiterkristallwachstums und des Fabrikationsprozesses zur{\"u}ckgef{\"u}hrt. Resonantes Tunneln bei Raumtemperatur konnte hingegen nicht beobachtet werden. Dies wird einer Besonderheit des Halbleiters GaSb zugeschrieben, welche daf{\"u}r sorgt, dass bei Raumtemperatur die Mehrheit der Elektronen Zust{\"a}nde am L-Punkt anstelle des Γ Punktes besetzt. Resonantes Tunneln {\"u}ber den klassischen Γ Γ Γ-Tunnelpfad ist so unterbunden. In Unterkapitel 4.3 werden die elektrischen Transporteigenschaften von AlAsSb/GaSb DBQW RTDs mit pseudomorph gewachsenen tern{\"a}ren Vorquantentopfemittern untersucht. Der prim{\"a}re Zweck der Vorquantentopfstrukturen liegt in der Erh{\"o}hung der Energieseparation zwischen Γ- und L-Punkt. So kann Elektronentransport {\"u}ber L- Kan{\"a}le unterdr{\"u}ckt und Elektronenzust{\"a}nde am Γ-Punkt wiederbev{\"o}lkert werden. Zudem ist bei gen{\"u}gend tiefen Vorquantentopfstrukturen aufgrund von Quantisierungseffekten eine Verbesserung der RTD-Transporteigenschaften m{\"o}glich. Strukturen ohne Vorquantentopf-Emitter zeigen ein Tieftemperatur- (T=77 K) Resonanz-zu-Talstrom-Verh{\"a}ltnis von PVCR=8,2, w{\"a}hrend bei Raumtemperatur kein resonantes Tunneln beobachtet werden kann. Die Integration von Ga0,84In0,16Sb- beziehungsweise GaAs0,05Sb0,95-Vorquantentopfstrukturen f{\"u}hrt zu resonantem Tunneln bei Raumtemperatur mit Resonanz-zu-Talstrom-Verh{\"a}ltnissen von PVCR=1,45 und 1,36. In Unterkapitel 4.4 wird die Abh{\"a}ngigkeit der elektrischen Transporteigenschaften von AlAsSb/GaSb RTDs vom As-Stoffmengenanteil des GaAsSb-Emitter-Vorquantentopfs und der AlAsSb-Tunnelbarriere untersucht. Eine Erh{\"o}hung der As-Stoffmengenkonzentration f{\"u}hrt zu einem erh{\"o}hten Raumtemperatur-PVCR mit Werten von bis zu 2,36 bei gleichzeitig reduziertem Tieftemperatur-PVCR. Das reduzierte Tieftemperatur-Transportverm{\"o}gen wird auf eine mit steigendem As-Stoffmengenanteil zunehmend degradierende Kristallqualit{\"a}t zur{\"u}ckgef{\"u}hrt. In Kapitel 5 AlAsSb/GaSb-RTD-Fotosensoren zur MIR-Lichtdetektion werden erstmalig RTD-Fotodetektoren f{\"u}r den MIR-Spektralbereich vorgestellt und auf ihre optoelektronischen Transporteigenschaften hin untersucht. Zudem wird erstmalig ein p-dotierter RTD-Fotodetektor demonstriert. In Unterkapitel 5.1 wird das Probendesign GaSb-basierter RTD-Fotodetektoren f{\"u}r den mittleren infraroten Spektralbereich vorgestellt. Im Speziellen werden Strukturen mit umgekehrter Ladungstr{\"a}gerpolarit{\"a}t (p- statt n-Dotierung, L{\"o}cher als Majorit{\"a}tsladungstr{\"a}ger) vorgestellt. In Unterkapitel 5.2 werden die optischen Eigenschaften der gitterangepassten quatern{\"a}ren GaInAsSb-Absorptionsschicht mittels Fourier-Transformations-Infrarot-Spektroskopie untersucht. {\"U}ber das Photolumineszenz-Spektrum wird die Bandl{\"u}ckenenergie zu E_Gap≅(447±5) meV bestimmt. Das entspricht einer Grenzwellenl{\"a}nge von λ_G≅(2,77±0,04) µm. Aus dem niederenergetischen monoexponentiellem Abfall der Linienform wird eine Urbach-Energie von E_U=10 meV bestimmt. Der hochenergetische Abfall folgt der Boltzmann-Verteilungsfunktion mit einem Abfall von k_B T=25 meV. In Unterkapitel 5.3 werden die elektrischen Transporteigenschaften der RTD-Fotodetektoren untersucht und mit denen einer n-dotierten Referenzprobe verglichen. Erstmalig wird resonantes Tunneln von L{\"o}chern in AlAsSb/GaSb-DBQW-RTDs bei Raumtemperatur demonstriert. Dabei ist PVCR=1,58. Bei T=4,2 K zeigen resonantes Loch- und Elektrontunneln vergleichbare Kenngr{\"o}ßen mit PVCR=10,1 und PVCR=11,4. Die symmetrische I(V)-Kennlinie der p-dotierten RTD-Fotodetektoren deutet auf eine geringe Valenzbanddiskontinuit{\"a}t zwischen GaSb und der GaInAsSb-Absorptionsschicht hin. Zudem sind die p-dotierten RTDs besonders geeignet f{\"u}r eine sp{\"a}tere Integration mit Typ-II-{\"U}bergittern. In Unterkapitel 5.4 werden die optoelektronischen Transporteigenschaften p-dotierter RTD-Fotodetektoren untersucht. Das vorgestellte neuartige RTD-Fotodetektorkonzept, welches auf resonanten Lochtransport als Majorit{\"a}tsladungstr{\"a}ger setzt, bietet speziell im f{\"u}r den MIR-Spektralbereich verwendeten GaSb-Materialsystem Vorteile, l{\"a}sst sich aber auch auf das InP- oder GaAs- Materialsystem {\"u}bertragen. Die untersuchten p-dotierten Fotodetektoren zeigen eine ausgepr{\"a}gte Fotosensitivit{\"a}t im MIR-Spektralbereich. Fotostromuntersuchungen werden f{\"u}r optische Anregung mittels eines Halbleiterlasers der Wellenl{\"a}nge λ=2,61 µm durchgef{\"u}hrt. Bei dieser Wellenl{\"a}nge liegen fundamentale Absorptionslinien atmosph{\"a}rischen Wasserdampfs. Die Fotostrom-Spannungs-Charakteristik best{\"a}tigt, dass die Fotosensitivit{\"a}t auf einer Modulation des resonanten Lochstroms {\"u}ber Coulomb-Wechselwirkung akkumulierter photogenerierter Minorit{\"a}tsladungstr{\"a}ger (Elektronen) beruht. Es werden Sensitivit{\"a}ten von S_I=0,13 A W-1 ermittelt. Durch eine verbesserte RTD-Quanteneffizienz aufgrund eines optimierten Dotierprofils der Absorptionsschicht l{\"a}sst sich die Sensitivit{\"a}t auf S_I=2,71 A W-1 erh{\"o}hen, was einem Multiplikationsfaktor von in etwa M\≈8,6 entspricht. Gleichzeitig wird jedoch der RTD-Hebelfaktor verringert, sodass n_(RTD p2)=0,42⋅n_(RTD p1). Erstmalig wurde damit erfolgreich Gas-Absorptionsspektroskopie anhand von H2O-Dampf mittels MIR-RTD-Fotodetektor an drei beieinanderliegenden Absorptionslinien demonstriert.}, subject = {Resonanz-Tunneldiode}, language = {de} } @phdthesis{Winter2018, author = {Winter, Patrick}, title = {Neue Methoden zur Quantitativen Kardiovaskul{\"a}ren MR-Bildgebung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174023}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Herzkreislauferkrankungen stellen die h{\"a}ufigsten Todesursachen in den Industrienationen dar. Die Entwicklung nichtinvasiver Bildgebungstechniken mit Hilfe der Magnetresonanz-Tomografie (MRT) ist daher von großer Bedeutung, um diese Erkrankungen fr{\"u}hzeitig zu erkennen und um die Entstehungsmechanismen zu erforschen. In den letzten Jahren erwiesen sich dabei genetisch modifzierte Mausmodelle als sehr wertvoll, da sich durch diese neue Bildgebungsmethoden entwickeln lassen und sich der Krankheitsverlauf im Zeitraffer beobachten l{\"a}sst. Ein große Herausforderung der murinen MRT-Bildgebung sind die die hohen Herzraten und die schnelle Atmung. Diese erfordern eine Synchronisation der Messung mit dem Herzschlag und der Atmung des Tieres mit Hilfe von Herz- und Atemsignalen. Konventionelle Bildgebungstechniken verwenden zur Synchronisation mit dem Herzschlag EKG Sonden, diese sind jedoch insbesondere bei hohen Feldst{\"a}rken (>3 T) sehr st{\"o}ranf{\"a}llig. In dieser Arbeit wurden daher neue Bildgebungsmethoden entwickelt, die keine externen Herz- und Atemsonden ben{\"o}tigen, sondern das MRT-Signal selbst zur Bewegungssynychronisation verwenden. Mit Hilfe dieser Technik gelang die Entwicklung neuer Methoden zur Flussbildgebung und der 3D-Bildgebung, mit denen sich das arterielle System der Maus qualitativ und quantitativ erfassen l{\"a}sst, sowie einer neuen Methode zur Quantisierung der longitudinalen Relaxationszeit T1 im murinen Herzen. Die in dieser Arbeit entwickelten Methoden erm{\"o}glichen robustere Messungen des Herzkreislaufsystems. Im letzten Kapitel konnte dar{\"u}ber hinaus gezeigt werden dass sich die entwickelten Bildgebungstechniken in der Maus auch auf die humane Bildgebung {\"u}bertragen lassen.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Strauss2018, author = {Strauß, Micha Johannes}, title = {Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen f{\"u}r AlGaAs Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159024}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Erforschung von Quantenpunkten mit ihren quantisierten, atom{\"a}hnlichen Zust{\"a}nden, bietet eine Vielzahl von M{\"o}glichkeiten auf dem Weg zum Quantencomputer und f{\"u}r Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden k{\"o}nnen. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass G{\"u}ten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und T{\"u}rmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor f{\"u}r diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatort{\"u}rmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der T{\"u}rmchen. Dar{\"u}ber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatort{\"u}rmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es m{\"o}glich sein, ein Resonatort{\"u}rmchen direkt {\"u}ber dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung f{\"u}r die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der H{\"a}lfte des angestrebten T{\"u}rmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel {\"u}ber den Quantenpunkten, Resonatort{\"u}rmchen zielgenau auf die Quantenpunkte prozessiert werden k{\"o}nnen. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. F{\"u}r ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe m{\"o}glichst defektfrei {\"u}berwachsen werden konnte, die Struktur des Lochgitters aber nicht zerst{\"o}rt wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum n{\"a}chsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung f{\"u}r eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 \% der Quantenpunkte innerhalb von 50 nm und 60 \% innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte M{\"o}glichkeit, diese in Halbleiterresonatoren einbinden zu k{\"o}nnen, machen sie auch interessant f{\"u}r die Anwendung im Telekommunikationsbereich. Um f{\"u}r Glasfasernetze Anwendung zu finden, muss jedoch die Wellenl{\"a}nge auf den Bereich von 1300 nm oder 1550 nm {\"u}bertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenl{\"a}nge von 1300nm. Eine fu ̈r andere Bauteile sowie f{\"u}r Laserdioden bereits h{\"a}ufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von {\"u}ber 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenl{\"a}ngen gr{\"o}ßer 1300 nm emittieren. So ist es nun m{\"o}glich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenl{\"a}nge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen f{\"u}r 1300nm zu realisieren.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Dremel2018, author = {Dremel, Kilian}, title = {Modellbildung des Messprozesses und Umsetzung eines modellbasierten iterativen L{\"o}sungsverfahrens der Schnittbild-Rekonstruktion f{\"u}r die R{\"o}ntgen-Computertomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157718}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In der computertomographischen Schnittbildgebung treten Artefakte, also Anteile des Ergebnisses auf, die nicht Teil des gemessenen Objekts sind und die somit die Auswertbarkeit der Ergebnisse beeinflussen. Viele dieser Artefakte sind auf die Inkonsistenz des Modells der Rekonstruktion zur Messung zur{\"u}ckzuf{\"u}hren. Gerade im Hinblick auf Artefakte durch die Energieabh{\"a}ngigkeit der rekonstruierten Schw{\"a}chungskoeffizienten und Abweichungen der Geometrieinformation des Rekonstruktionsmodells wird h{\"a}ufig der Weg einer Nachbearbeitung der Messdaten beschritten, um Rekonstruktionsartefakte zu vermeiden. Im Zuge dieser Arbeit wird ein Modell der computertomographischen Aufnahme mit Konzentration auf industrielle und materialwissenschaftliche Systeme erstellt, das nicht genutzt wird um die Messdaten zu ver{\"a}ndern, sondern um das Rekonstruktionsmodell der Aufnahmerealit{\"a}t anzupassen. Zun{\"a}chst werden iterative Rekonstruktionsverfahren verglichen und ein passender Algorithmus ausgew{\"a}hlt, der die gew{\"u}nschten Modifikationen des Aufnahmemodells erlaubt. F{\"u}r diese Modifikationen werden bestehende Methoden erweitert und neue modellbasierte Ans{\"a}tze entwickelt, die in den Rekonstruktionsablauf integriert werden k{\"o}nnen. Im verwendeten Modell werden die Abh{\"a}ngigkeiten der rekonstruierten Werte vom polychromatischen R{\"o}ntgenspektrum in das Simulationsmodell des Rekonstruktionsprozesses eingebracht und die Geometrie von Brennfleck und Detektorelementen integriert. Es wird gezeigt, dass sich durch die verwendeten Methoden Artefakte vermeiden lassen, die auf der Energieabh{\"a}ngigkeit der Schw{\"a}chungskoeffizienten beruhen und die Aufl{\"o}sung des Rekonstruktionsbildes durch Geometrieannahmen gesteigert werden kann. Neben diesen Ans{\"a}tzen werden auch neue Erweiterungen der Modellierung umgesetzt und getestet. Das zur Modellierung verwendete R{\"o}ntgenspektrum der Aufnahme wird im Rekonstruktionsprozess angepasst. Damit kann die ben{\"o}tigte Genauigkeit dieses Eingangsparameters gesenkt werden. Durch die neu geschaffene M{\"o}glichkeit zur Rekonstruktion der Kombination von Datens{\"a}tzen die mit unterschiedlichen R{\"o}ntgenspektren aufgenommen wurden wird es m{\"o}glich neben dem Schw{\"a}chungskoeffizienten die Anteile der Comptonabsorption und der photoelektrischen Absorption getrennt zu bestimmen. Um Abweichungen vom verwendeten Geometriemodell zu ber{\"u}cksichtigen wird eine Methode auf der Basis von Bildkorrelation implementiert und getestet, mit deren Hilfe die angenommene Aufnahmegeometrie automatisch korrigiert wird. Zudem wird in einem neuartigen Ansatz zus{\"a}tzlich zur detektorinternen Streustrahlung die Objektstreustrahlung w{\"a}hrend des Rekonstruktionsprozesses deterministisch simuliert und so das Modell der Realit{\"a}t der Messdatenaufnahme angepasst. Die Umsetzung des daraus zusammengesetzten Rekonstruktionsmodells wird an Simulationsdatens{\"a}tzen getestet und abschließend auf Messdaten angewandt, die das Potential der Methode aufzeigen.}, subject = {Dreidimensionale Rekonstruktion}, language = {de} } @phdthesis{Maier2018, author = {Maier, Patrick}, title = {Memristanz und Memkapazit{\"a}t von Quantenpunkt-Speichertransistoren: Realisierung neuromorpher und arithmetischer Operationen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164234}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In dieser Arbeit werden Quantenpunkt-Speichertransistoren basierend auf modulationsdotierten GaAs/AlGaAs Heterostrukturen mit vorpositionierten InAs Quantenpunkten vorgestellt, welche in Abh{\"a}ngigkeit der Ladung auf den Quantenpunkten unterschiedliche Widerst{\"a}nde und Kapazit{\"a}ten aufweisen. Diese Ladungsabh{\"a}ngigkeiten f{\"u}hren beim Anlegen von periodischen Spannungen zu charakteristischen, durch den Ursprung gehenden Hysteresen in der Strom-Spannungs- und der Ladungs-Spannungs-Kennlinie. Die ladungsabh{\"a}ngigen Widerst{\"a}nde und Kapazit{\"a}ten erm{\"o}glichen die Realisierung von neuromorphen Operationen durch Nachahmung von synaptischen Funktionalit{\"a}ten und arithmetischen Operationen durch Integration von Spannungs- und Lichtpulsen.}, subject = {Nichtfl{\"u}chtiger Speicher}, language = {de} } @phdthesis{Weih2018, author = {Weih, Robert}, title = {Interbandkaskadenlaser f{\"u}r die Gassensorik im Spektralbereich des mittleren Infrarot}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169247}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Aufgrund der hohen Sensitivit{\"a}t bei der Absorptionsmessung von Gasen im Spektral- bereich des mittleren Infrarot steigt die Nachfrage nach monolithischen, kompakten und energieeffizienten Laserquellen in Wellenl{\"a}ngenfenster zwischen 3 und 6 μm ste- tig. In diesem Bereich liegen zahlreiche Absorptionsbanden von Gasen, welche sowohl in der Industrie als auch in der Medizintechnik von Relevanz sind. Mittels herk{\"o}mm- licher Diodenlaser konnte dieser Bereich bisher nur unzureichend abgedeckt werden, w{\"a}hrend Quantenkaskadenlaser infolge ihrer hohen Schwellenleistungen vor allem f{\"u}r portable Anwendungen nur bedingt geeignet sind. Interbandkaskadenlaser kom- binieren die Vorteile des Interband{\"u}bergangs von konventionellen Diodenlasern mit der M{\"o}glichkeit zur Kaskadierung der Quantenkaskadenlaser und k{\"o}nnen einen sehr breiten Spektralbereich abdecken. Das {\"u}bergeordnete Ziel der Arbeit war die Optimierung von molekularstrahlepitak- tisch hergestellten Interbandkaskadenlasern auf GaSb - Basis im Spektralbereich des mittleren Infrarot f{\"u}r den Einsatz in der Gassensorik. Dies impliziert die Erm{\"o}gli- chung von Dauerstrichbetrieb bei Raumtemperatur, das Erreichen m{\"o}glichst geringer Schwellenleistungen sowie die Entwicklung eines flexiblen Konzepts zur Selektion von nur einer longitudinalen Mode. Da die Qualit{\"a}t der gewachsenen Schichten die Grundvoraussetzung f{\"u}r die Herstel- lung von performanten Bauteilen darstellt, wurde diese im Rahmen verschiedener Wachstumsserien eingehend untersucht. Nachdem das Flussverh{\"a}ltnis zwischen den Gruppe -V Elementen Sb und As ermittelt werden konnte, bei dem die InAs/AlSb - {\"U}bergitter der Mantelschichten verspannungskompensiert hergestellt werden k{\"o}nnen, wurde die optimale Substrattemperatur beim Wachstum dieser zu 450 ◦C bestimmt. Anhand von PL - sowie HRXRD- Messungen an Testproben konnte auch die opti- male Substrattemperatur beim Wachstum der charakteristischen W- Quantenfilme zu 450 ◦C festgelegt werden. Als weiterer kritischer Parameter konnte der As - Fluss beim Wachstum der darin enthaltenen InAs - Schichten identifiziert werden. Die bes- ten Ergebnisse wurden dabei mit einem As - Fluss von (1.2 ± 0.2) × 10-6 torr erzielt. Dar{\"u}ber hinaus konnte in Kooperation mit der Technischen Universit{\"a}t Breslau eine sehr hohe guteWachstumshomogenit{\"a}t auf den verwendeten 2′′ großen GaSb -Wafern nachgewiesen werden. Im Anschluss an die Optimierung des Wachstums verschiedener funktioneller Be- standteile wurden basierend auf einem in der Literatur ver{\"o}ffentlichten Laserschicht- aufbau diverse Variationen mit dem Ziel der Optimierung der Laserkenndaten unter- sucht. Zum Vergleich wurden 2.0 mm lange und 150 μm breite, durch die aktive Zone ge{\"a}tzte Breitstreifenlaser herangezogen. Eine erhebliche Verbesserung der Kenndaten konnte durch die Anwendung des Kon- zepts des Ladungstr{\"a}gerausgleichs in der aktiven Zone erreicht werden. Bei einer Si - Dotierkonzentration von 5.0 × 1018 cm-3 in den inneren vier InAs - Filmen des Elektroneninjektors konnte die niedrigste Schwellenleistungsdichte von 491W/cm2 erreicht werden, was einer Verbesserung von 59\% gegen{\"u}ber des Referenzlasers ent- spricht. Mithilfe l{\"a}ngenabh{\"a}ngiger Messungen konnte gezeigt werden, dass der Grund f{\"u}r die Verbesserung in der deutlichen Reduzierung der internen Verluste auf nur 11.3 cm-1 liegt. Weiterhin wurde die Abh{\"a}ngigkeit der Laserkenngr{\"o}ßen von der Anzahl der verwendeten Kaskaden in den Grenzen von 1 bis 12 untersucht. Wie das Konzept der Kaskadierung von Quantenfilmen erwarten ließ, wurde eine mo- notone Steigerung des Anstiegs der Strom - Lichtleistungskennlinie sowie eine Pro- portionalit{\"a}t zwischen der Einsatzspannung und der Kaskadenzahl nachgewiesen. F{\"u}r ICLs mit einer gegebenen Wellenleiterkonfiguration und einer Wellenl{\"a}nge um 3.6 μm wurde bei einer Temperatur von 20 ◦C mit 326W/cm2 die niedrigste Schwel- lenleistungsdichte bei einem ICL mit vier Kaskaden erreicht. Des Weiteren konnte f{\"u}r einen ICL mit 10 Kaskaden und einer Schwellenstromdichte von unter 100A/cm2 ein Bestwert f{\"u}r Halbleiterlaser in diesem Wellenl{\"a}ngenbereich aufgestellt werden. Eine weitere Reduktion der Schwellenleistungsdichte um 24\% konnte anhand von Lasern mit f{\"u}nf Kaskaden durch die Reduktion der Te - Dotierung von 3 × 1017 cm-3 auf 4 × 1016 cm-3 im inneren Teil der SCLs erreicht werden. Auch hier wurde mit- tels l{\"a}ngenabh{\"a}ngiger Messungen eine deutliche Reduktion der internen Verluste nachgewiesen. In einer weiteren Untersuchung wurde der Einfluss der SCL - Dicke auf die spektralen sowie elektro - optischen Eigenschaften untersucht. Dar{\"u}ber hin- aus konnten ICLs realisiert werden, deren Mantelschichten nicht aus kurzperiodigen InAs/AlSb - {\"U}bergittern sondern aus quatern{\"a}rem Al0.85Ga0.15As0.07Sb0.93 bestehen. F{\"u}r einen derartig hergestellten ICL konnte eine Schwellenstromdichte von 220A/cm2 bei einer Wellenl{\"a}nge von 3.4 μm gezeigt werden. Mithilfe der durch die verschiedenen Optimierungen gewonnenen Erkenntnisse so- wie Entwurfskriterien aus der Literatur wurden im Rahmen diverser internationaler Kooperationsprojekte ICLs bei verschiedenen Wellenl{\"a}ngen zwischen 2.8 und 5.7 μm hergestellt. Der Vergleich der Kenndaten zeigt einen eindeutigen Trend zu einer stei- genden Schwellenstromdichte mit steigender Wellenl{\"a}nge. Die charakteristische Tem- peratur der untersuchten Breitstreifenlaser nimmt von circa 65K bei lambda=3.0 μm mit steigender Wellenl{\"a}nge auf ein Minimum von 35K im Wellenl{\"a}ngenbereich um 4.5 μm ab und steigt mit weiter steigender Wellenl{\"a}nge wieder auf 45K an. Ein m{\"o}glicher Grund f{\"u}r dieses Verhalten konnte mithilfe von Simulationen in der Anordnung der Valenzb{\"a}nder im W-Quantenfilm gefunden werden. Zur Untersuchung der Tauglichkeit der epitaktisch hergestellten Schichten f{\"u}r den in der Anwendung hilfreichen Dauerstrichbetrieb oberhalb von Raumtemperatur wur- den Laser in Stegwellenleitergeometrie mit einer aufgalvanisierten Goldschicht zur verbesserten W{\"a}rmeabfuhr hergestellt. Nach dem Aufbau der Laser auf W{\"a}rmesen- ken wurde der Einfluss der Kavit{\"a}tsl{\"a}nge sowie der Stegbreite auf diverse Kennda- ten untersucht. Des Weiteren wurden eine Gleichung verifiziert, welche es erlaubt die maximal erreichbare Betriebstemperatur im Dauerstrichbetrieb aus der auf die Schwellenleistung bezogenen charakteristischen Temperatur sowie dem thermischen Widerstand des Bauteils zu berechnen. Mithilfe von optimierten Bauteilen konn- ten Betriebstemperaturen von mehr als 90 ◦C und Ausgangsleistungen von mehr als 100mW bei einer Betriebstemperatur von 20 ◦C erreicht werden. Im Hinblick auf die Anwendung der Laser in der Absorptionsspektroskopie wurde ab- schließend ein DFB-Konzept, welches zuvor bereits in konventionellen Diodenlasern zur Anwendung kam, erfolgreich auf das ICL - Material {\"u}bertragen. Dabei kommt ein periodisches Metallgitter zum Einsatz, welches seitlich der ge{\"a}tzten Stege aufge- bracht wird und aufgrund von Verlustkopplung eine longitudinale Mode bevorzugt. Durch den Einsatz von unterschiedlichen Gitterperioden konnten monomodige ICLs basierend auf dem selben Epitaxiematerial in einem spektralen Bereich von mehr als 100nm hergestellt werden. Ein 2.4mm langer DFB- Laser konnte einen Abstimmbe- reich von mehr als 10nm bei Verschiebungsraten von 0.310nm/K und 0.065nm/mA abdecken. Der DFB- ICL zeigte im Dauerstrichbetrieb in einem Temperaturbereich zwischen 10 und 35 ◦C monomodigen Betrieb mit einer Ausgangsleistung von mehre- ren mW. Basierend auf dem in dieser Arbeit gewachsenem Material und dem DFB- Konzept konnte im Rahmen verschiedener Entwicklungsprojekte bereits erfolgreich Absorptionsspektroskopie in einem breiten Spektralbereich des mittleren Infrarot be- trieben werden.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Zimmermann2018, author = {Zimmermann, Christian}, title = {Halbleiterlaser mit lateralem R{\"u}ckkopplungsgitter f{\"u}r metrologische Anwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In der vorliegenden Arbeit wurde angestrebt, die Eigenschaften komplexgekoppelter DFB-Laser bez{\"u}glich ihrer Nutzung f{\"u}r metrologische Untersuchungen zu analysieren und zu verbessern. Hierf{\"u}r wurden die r{\"a}umlichen Emissionseigenschaften der lateral komplexgekoppelten DFB-Laser in ausgiebigen Studien diskutiert. F{\"u}r kommerziell erh{\"a}ltliche Laser wurde daraufhin das Fernfeld sowohl in lateraler als auch vertikaler Richtung berechnet. Die entsprechenden Fernfeldmessungen konnten die Theorie best{\"a}tigen und wie erwartet, waren die Divergenzwinkel mit 52° FWHM in der Wachstumsrichtung und 12° FWHM in lateraler Richtung (vgl. Abb. 6.4 und 6.5) sehr unterschiedlich und zeugen von einer großen Differenz in den Fernfeldwinkeln. Mit {\"U}berlegungen zu dem optischen bzw. elektrischen Einschlusspotential im Hinblick auf die ver{\"a}nderte Fernfeldsituation wurde zun{\"a}chst die reine Halbleiterlaserschichtfolge optimiert. Der Divergenzwinkel in Wachstumsrichtung wurde um mehr als 50\% auf 25° FWHM gesenkt. Damit konnte die Asymmetrie des Fernfeldes um einen Faktor von mehr als 4 reduziert werden. Strahlg{\"u}teuntersuchungen zeigten ein nahezu beugungsbegrenztes Gaußsches Strahlprofil in der langsamen Achse mit einem M2-Wert von 1,13 (Abb. 6.3). Eine weitere Untersuchung betraf die Linienbreitenabh{\"a}ngigkeit solcher Laser von ihrer Ausgangsleistung, der Resonatorl{\"a}nge, der Facettenverg{\"u}tung und der Gitterkopplung. Die erste Beobachtung betraf die Verschm{\"a}lerung der Linienbreite mit ansteigender Ausgangsleistung bis hin zu einer erneuten Verbreiterung (Rebroadening) der Linienbreite (siehe Abb. 7.3). Der Einfluss auf die Linienbreite durch eine Ver{\"a}nderung der Resonatorl{\"a}nge ließ sich sehr gut mit der Theorie vergleichen und so erbrachte eine Verdopplung der Resonatorl{\"a}nge eine Verschm{\"a}lerung der Linienbreite um mehr als einen Faktor 3. Die Verl{\"a}ngerung der Kavit{\"a}t beg{\"u}nstigte den negativen Effekt des sog. Rebroadenings nicht, da bei der verwendeten Technologie der lateral komplexen Kopplung der Index-Beitrag an der R{\"u}ckkopplung sehr klein ist. Im Falle reiner Indexkopplung w{\"a}re dies durch die ver{\"a}nderte κ · L-Lage deutlich zu sp{\"u}ren. Ein weiterer, oben auch angesprochener Vorteil der komplexen Kopplung ist, dass die Facettenreflektivit{\"a}ten einen wesentlich kleineren Einfluss auf die DFB-Ausbeute und auf deren Eigenschaften haben als bei der reinen Indexkopplung. Dies l{\"a}sst sich ausnutzen, um die Photonenlebensdauer in der Kavit{\"a}t zu erh{\"o}hen ohne negativ die DFB-Ausbeute zu beeinflussen. In dieser Arbeit wurde bei verschiedenen L{\"a}ngen die reine gebrochene Facette mit einer verg{\"u}teten verglichen und der Einfluss auf die Linienbreite analysiert. Die Frontfacette wurde durch eine Passivierung bei ca. 30\% gehalten und die R{\"u}ckfacette durch einen doppelten Reflektor auf ca. 85\% gesetzt. Daraus resultierte eine Reduktion der Linienbreite um mehr als die H{\"a}lfte. Neben diesen Ergebnissen wurde auch der Einfluss der komplexen Kopplung untersucht. Da die durch das Gitter zus{\"a}tzlich eingebrachten Verluste zu einer Vergr{\"o}ßerung der Linienbreiten beitragen, wird bei einem gr{\"o}ßeren geometrischen Gitter{\"u}berlapp das Frequenzrauschen auch entsprechend steigen. Dies ließ sich auch im Experiment best{\"a}tigen. Zudem wurde eine L{\"a}ngenabh{\"a}ngigkeit dieses Effektes festgestellt. Die Reduzierung der Linienbreite bei l{\"a}ngeren Bauteilen ist deutlich ausgepr{\"a}gter als bei k{\"u}rzeren. So ist bei {\"a}hnlicher Verringerung des Gitter{\"u}berlappes bei einem 900 μm langen Bauteil eine Linienbreitenreduzierung um einen Faktor von „nur" 1,85 beobachtbar, aber bei der doppelten Kavit{\"a}tsl{\"a}nge ist dieser Faktor schon auf 3,60 angestiegen. Im Rahmen dieser Arbeit wurden DFB-Laser hergestellt, die eine Linienbreite von bis zu 198 kHz aufwiesen. Dies stellt f{\"u}r lateral komplexgekoppelte Laser einen absoluten Rekordwert dar. Im Vergleich zu Index-DFB-Lasern ist dieser Wert bzgl. der Linienbreite mit den aktuellsten Ergebnissen aus der Forschung zu vergleichen [CTR+11], bei welchen eine Linienbreite zu 200 kHz bestimmt wurde. In dem letzten Abschnitt dieser Arbeit wurde der Einfluss einer ver{\"a}nderten Phasenlage von Gitter und Facette untersucht. Dabei wurden spezielle Bauteile hergestellt (3-Segment-DFB-Laser) und verschiedene Gitterl{\"a}ngen untersucht. Die Phasenlage kann reversibel {\"u}ber den eingestellten Strom in den gitterfreien Segmenten geregelt werden. Wie vorhergesagt, best{\"a}tigen die Experimente, dass diese Phasenbeziehung einen signifikanten Einfluss auf die Ausgangsleistung, die Wellenl{\"a}nge mit ihrer zugeh{\"o}rigen Seitenmodenunterdr{\"u}ckung und auch auf die Linien-breite hat. Bei der Analyse der Linienbreite konnte eindeutig beobachtet werden, dass f{\"u}r die verschiedenen L{\"a}ngen die inverse Linienbreite sehr gut mit der relativen Seitenmodenunterdr{\"u}ckung gekoppelt ist. Dies stellt eine deutliche Erleichterung der zuk{\"u}nftigen Optimierung der komplexgekoppelten DFB-Laser dar, da eine Linienbreitenuntersuchung meist deutlich zeitaufwendiger ist als eine Analyse mit einem optischen Spektrometer.}, subject = {DFB-Laser}, language = {de} } @phdthesis{Finkenberg2018, author = {Finkenberg, Frank}, title = {Flipped Classroom im Physikunterricht}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164146}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In der Unterrichtsmethode Flipped Classroom sind schulische und h{\"a}usliche Aktivit{\"a}ten vertauscht. Instruktionale Elemente werden in online verf{\"u}gbare Lernvideos ausgelagert, welche die Sch{\"u}ler als h{\"a}usliche Vorbereitung ansehen. Im Unterricht stehen dann sch{\"u}lerzentrierte T{\"a}tigkeiten im Vordergrund, in denen die Sch{\"u}ler ihr Wissen anwenden und vertiefen k{\"o}nnen. Durch die Auslagerung von Inputphasen wandelt sich die Rolle des Lehrers vom Instructor zum Lernbegleiter. Die vorliegende quasi-experimentelle Studie im Pre-/Postdesign mit Kontrollgruppe untersuchte die Wirkungen des Flipped Classroom in Physikkursen der Oberstufe (Grundkursniveau) an zwei deutschen Gymnasien mit N = 151 Sch{\"u}lerinnen und Sch{\"u}lern. Acht Physikkurse der 11. Jahrgangsstufe nahmen an der Studie teil, die sich {\"u}ber einen Zeitraum von zwei Schuljahren erstreckte (2015/16 und 2016/17). Vier der f{\"u}nf teilnehmenden Lehrkr{\"a}fte unterrichteten sowohl einen Kontroll- als auch einen Treatmentkurs. S{\"a}mtliche Lernvideos wurden von den Lehrkr{\"a}ften selbst erstellt. Dabei integrierten sie reale Experimente, um dem Anspruch physikauthentischen Unterrichts gerecht zu werden. Die Forschungsfragen richteten sich sowohl auf die Leistung in einem Fachwissenstest als auch auf affektive Lernmerkmale wie die Motivation, das Interesse und das Selbstkonzept. Zus{\"a}tzlich wurden die wahrgenommene Lehrerunterst{\"u}tzung und das Hausaufgabenverhalten untersucht. Die Anwendung von Flipped Classroom im Physikunterricht zeigte gr{\"o}ßtenteils positive Effekte. Die Sch{\"u}lerinnen und Sch{\"u}ler im Flipped Classroom hatten einen h{\"o}heren kognitiven Lernzuwachs und ein besseres Selbstkonzept als ihre Mitsch{\"u}ler, die traditionell unterrichtet wurden. Das Leistungsniveau und das Geschlecht der Sch{\"u}lerinnen und Sch{\"u}ler hatten dabei keinen Einfluss auf diese Effekte. W{\"a}hrend die Motivation, sich mit Physik zu besch{\"a}ftigen, in der Kontrollgruppe sank, blieb sie in der Treatmentgruppe auf konstantem Niveau. Bei genauerem Blick zeigte sich, dass die Motivation bei Sch{\"u}lerinnen im Flipped Classroom anstieg, bei Sch{\"u}lerinnen im traditionellen Unterricht jedoch abnahm. Das Interesse am Unterrichtsfach Physik wurde in beiden Gruppen geringer. Sowohl die wahrgenommene Lehrerunterst{\"u}tzung als auch die Hausaufgabendauer blieben in beiden Gruppen zwischen Pre- und Posttest unver{\"a}ndert. Die Hausaufgabendisziplin war im Flipped Classroom jedoch deutlich h{\"o}her, was zeigt, dass die Sch{\"u}lerinnen und Sch{\"u}ler eher bereit waren, sich instruktionale Lernvideos anzusehen als klassische Hausaufgaben zu bearbeiten.}, subject = {Physikunterricht}, language = {de} } @phdthesis{Kolb2018, author = {Kolb, Verena}, title = {Einfluss metallischer Nanostrukturen auf die optoelektronischen Eigenschaften organischer Halbleiter}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170279}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Opto-elektronische Bauelemente auf Basis organischer Molek{\"u}le haben in den letzten Jahren nicht nur in Nischenbereichen, wie der Kombination organischer Photovoltaik mit geb{\"a}udeintegrierten Konzepten, sondern vor allem auch in der Entwicklung von kommerziell verf{\"u}gbaren OLED (organische lichtemittierende Dioden) Bauteilen, wie 4K TV-Ger{\"a}ten und Handy Displays, an Bedeutung gewonnen. Im Vergleich zu anorganischen Bauteilen weisen jedoch vor allem organische Solarzellen noch weitaus geringere Effizienzen auf, weswegen die Erforschung ihrer Funktionsweise und der Einfl{\"u}sse der einzelnen Bestandteile auf mikroskopischer Ebene f{\"u}r die Weiterentwicklung und Verbesserung des Leistungspotentials dieser Technologie unabdingbar ist. \\ Um dies zu erreichen, wurde in dieser Arbeit die Wechselwirkung zwischen der lokalisierten Oberfl{\"a}chenplasmonenresonanz (LSPR) metallischer Nanopartikel mit den optischen Anregungen organischer D{\"u}nnschichten in daf{\"u}r eigens pr{\"a}parierten opto-elektronischen Hybrid-Bauteilen aus kleinen Molek{\"u}len untersucht. Durch die Implementierung und Kopplung an solche plasmonischen Nanostrukturen kann die Absorption bzw. Emission durch das lokal um die Strukturen erh{\"o}hte elektrische Feld gezielt beeinflusst werden. Hierbei ist der spektrale {\"U}berlapp zwischen LSPR und den Absorptions- bzw. E\-missions\-spek\-tren der organischen Emitter entscheidend. In dieser Arbeit wurden durch Ausnutzen dieses Mechanismus sowohl die Absorption in organischen photovoltaischen Zellen erh{\"o}ht, als auch eine verst{\"a}rkte Emission in nanostrukturierten OLEDs erzeugt. \\ Besonderer Fokus wurde bei diesen Untersuchungen auf mikroskopische Effekte durch neu entstehende Grenzfl{\"a}chen und die sich ver{\"a}ndernden Morphologien der aktiven organischen Schichten gelegt, da deren Einfl{\"u}sse bei optischen Untersuchungen oftmals nur unzureichend ber{\"u}cksichtigt werden. In der Arbeit wurden daher die nicht zu vernachl{\"a}ssigenden Folgen der Einbringung von metallischen Nanostrukturen auf die Morphologie und Grenzfl{\"a}chen zusammen mit den spektralen Ver{\"a}nderungen der Absorptions- und Emissionscharakteristik organischer Molek{\"u}le analysiert und in Zusammenhang gebracht, wodurch eine Verbesserung der Effizienzen opto-elektronischer Bauteile erreicht werden soll.}, subject = {Nanostruktur}, language = {de} } @phdthesis{Treisch2018, author = {Treisch, Florian}, title = {Die Entwicklung der Professionellen Unterrichtswahrnehmung im Lehr-Lern-Labor Seminar}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164170}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Der {\"U}bergang vom der ersten Phase der Lehramtsausbildung ins Referendariat wird h{\"a}ufig mit dem Begriff „Praxisschock" verbunden. Viele Studierende und Referendare f{\"u}hlen sich unzureichend auf den Unterricht in der Schule vorbereitet. Sie fordern deshalb eine st{\"a}rkere Verzahnung von Theorie und Praxis, also eine Anwendung der erlernten Theorien in „echten" Praxisphasen auch schon in der ersten Phase der Lehramtsausbildung. Das Lehr-Lern-Labor Seminar der Universit{\"a}t W{\"u}rzburg kann dazu beitragen, diese Verbindung von Theorie und Praxis herzustellen. Grundlegend sollen die Studierenden in diesem Seminar ihr fachliches, didaktisches und p{\"a}dagogisches (Vor-)Wissen aufgreifen und in komplexit{\"a}tsreduzierten Handlungsumgebungen anwenden. Dabei sollen sie im Rahmen des Lehr-Lern-Labor Seminars zun{\"a}chst Experimentierstationen zu vorgegebenen Themengebieten aus dem bayerischen Lehrplan konzipieren, um anschließend mehrmals Sch{\"u}lerinnen und Sch{\"u}ler an diesen Stationen zu betreuen. Im Sinne einer iterativen Praxis werden die Betreuungen mehrmals von den Studierenden zusammen mit zwei Dozenten reflektiert. Letztlich wiederholen sich die Betreuungen, die Reflexionsphasen und m{\"o}gliche Verbesserungen der Stationen viermal in einem zyklischen Prozess. F{\"u}r die Verkn{\"u}pfung von theoretischem Wissen in konkreten Handlungssituationen sind Wahrnehmungsprozesse von Bedeutung. Die sogenannte Professionelle Unterrichts-wahrnehmung beschreibt die F{\"a}higkeit, relevante Unterrichtssituationen zu erkennen und theoriebezogen zu bewerten. Sie verkn{\"u}pft das zugrunde liegende Wissen mit konkreten Handlungssituationen und dient somit als Bindeglied zwischen dem Wissen und dem Handeln, welches speziell in Reflexionsphasen gef{\"o}rdert werden kann. Durch die mehrmaligen Reflexionsprozesse der eigenen Betreuungen und die der Kommilitonen im Lehr-Lern-Labor Seminar k{\"o}nnte es eine vielversprechende Grundlage zur F{\"o}rderung der Professionellen Unterrichtswahrnehmung darstellen. Die grundlegende Fragestellung der vorliegenden Arbeit ist es daher zu untersuchen, ob sich die Professionelle Unterrichtswahrnehmung im Rahmen des Lehr-Lern-Labor Seminars f{\"o}rdern l{\"a}sst und inwieweit neu integrierte Videoanalysen der eigenen Betreuungen und die der Kommilitonen die Professionelle Unterrichtswahrnehmung der Studierenden zus{\"a}tzlich f{\"o}rdern. Weiterhin interessiert, ob personenspezifische Merkmale einen zus{\"a}tzlichen Einfluss auf die Entwicklung der Professionellen Unterrichtswahrnehmung aus{\"u}ben. Erg{\"a}nzend wird untersucht, ob zwischen dem Fachwissen, dem didaktischen Wissen und der Professionellen Unterrichtswahrnehmung Zusammenh{\"a}nge bestehen. Dies k{\"o}nnte Aufschluss darauf geben, inwieweit Fachwissen und didaktisches Wissen die Entwicklung der Professionellen Unterrichtswahrnehmung im Seminar bedingen. Diese Arbeit leistet somit einen wichtigen Beitrag zur Untersuchung der Wirksamkeit eines Lehr-Lern-Labor Seminars, welches in die Ausbildung von Physiklehrkr{\"a}ften integriert wurde und zeigt auf, wie das Seminar bez{\"u}glich der F{\"o}rderung der Professionellen Unterrichtswahrnehmung effektiver gestaltet werden kann.}, subject = {Lehramtsstudium}, language = {de} } @phdthesis{Kreutner2018, author = {Kreutner, Jakob}, title = {Charakterisierung des Knochens und seiner Mikrostruktur mit hochaufl{\"o}sender 3D-MRT}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168858}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Neue Therapieans{\"a}tze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosem{\"o}glichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher r{\"a}umlicher Pr{\"a}zision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ans{\"a}tze f{\"u}r die hochaufl{\"o}sende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer pr{\"a}-klinischen Studie an einem Modell der H{\"u}ftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen r{\"a}umlichen Aufl{\"o}sung, konnten durch eine systematische Auswertung der Signalintensit{\"a}ten von T1- und T2-FS-gewichteten Aufnahmen R{\"u}ckschl{\"u}sse {\"u}ber Ver{\"a}nderungen in der Mikrostruktur gezogen werden, die dar{\"u}ber hinaus in guter {\"U}bereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) erm{\"o}glicht und eine unabh{\"a}ngige Bewertung erreicht. Um die Limitationen der begrenzten Aufl{\"o}sung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ans{\"a}tze f{\"u}r eine hochaufgel{\"o}ste 3D-Aufnahme entwickelt. Hierf{\"u}r wurden Spin-Echo-basierte Sequenzen gew{\"a}hlt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldst{\"a}rke von 1,5 T mit einer hohen r{\"a}umlichen Aufl{\"o}sung innerhalb einer vertretbaren Zeit erzielt werden k{\"o}nnen, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 \% h{\"o}here Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Aufl{\"o}sung von 160 × 160 × 400 µm. F{\"u}r die Bildgebung des H{\"u}ftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um l{\"a}ngere Messzeiten durch ein unn{\"o}tig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdr{\"u}ckt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gel{\"o}st. Technisch bedingt konnte jedoch nicht eine vergleichbare Aufl{\"o}sung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden k{\"o}nnen, konnte jedoch erfolgreich auf den Unterkiefer {\"u}bertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine d{\"u}nne kn{\"o}cherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdr{\"u}ckung von Einfaltungsartefakten eine {\"a}hnlich gute Lokalisierung des Nervenkanals {\"u}ber die gesamte L{\"a}nge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte dar{\"u}ber hinaus die Aufl{\"o}sung im Vergleich zu bisherigen Studien deutlich erh{\"o}ht werden, was insgesamt eine pr{\"a}zisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese f{\"u}r die klinische Anwendung zugelassen werden. Die durchgef{\"u}hrten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengr{\"o}ße und Wandst{\"a}rke. Dar{\"u}ber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter {\"U}bereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverl{\"a}ssige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsm{\"o}glichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldst{\"a}rke in vivo Voxelgr{\"o}ßen im Submillimeterbereich f{\"u}r alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der r{\"a}umlichen Aufl{\"o}sung erh{\"o}hen die Genauigkeit der verschiedenen Anwendungen und erm{\"o}glichen eine bessere Identifikation von kleinen Abweichungen, was eine fr{\"u}here und zuverl{\"a}ssigere Diagnose f{\"u}r Patienten verspricht.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Graus2018, author = {Graus, Martin}, title = {Anwendung und Weiterentwicklung der Orbitaltomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163194}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Als Orbitaltomographie wird eine junge Methode innerhalb der Photoelektronenspektrokopie bezeichnet, welche es erm{\"o}glicht, Molek{\"u}lorbitale mit hoher Ortsaufl{\"o}sung abzubilden. Hierf{\"u}r werden die zu untersuchenden Molek{\"u}le durch elektromagnetische Strahlung angeregt und die mittels Photoeffekt emittierten Elektronen hinsichtlich ihres Impulses und ihrer kinetischen Energie charakterisiert. Moderne Photoemissionsexperimente erlauben die simultane Vermessung des gesamten Impulshalbraumes oberhalb der Probe. Die detektierte Intensit{\"a}tsverteilung stellt dann unter bestimmten Bedingungen das Betragsquadrat eines hemisph{\"a}rischen Schnittes durch den Fourierraum des spektroskopierten Orbitals dar, wobei der Radius der Hemisph{\"a}re von der Energie der anregenden Strahlung abh{\"a}ngt. Bei den in dieser Arbeit untersuchten Systemen handelt es sich um adsorbierte Molek{\"u}le, die hochgeordnete Schichten auf kristallinen Edelmetalloberfl{\"a}chen bilden. Im Fall eindom{\"a}nigen Wachstums liefern die parallel orientierten Molek{\"u}le identische Photoemissionssignale. Kommt es hingegen zur Ausbildung von Rotations- und Spiegeldom{\"a}nen, stellt die gemessene Impulsverteilung eine Superposition der unterschiedlichen Einzelbeitr{\"a}ge dar. Somit lassen sich R{\"u}ckschl{\"u}sse auf die Orientierungen der Molek{\"u}le auf den Substraten ziehen. Diese Charakterisierung molekularer Adsorptionsgeometrien wird anhand verschiedener Modellsysteme vorgestellt. Variiert man die Energie der anregenden Strahlung und somit den Radius der hemisph{\"a}rischen Schnitte durch den Impulsraum, ist es m{\"o}glich den Fourierraum des untersuchten Molek{\"u}lorbitals dreidimensional abzubilden. Kombiniert man die gemessenen Intensit{\"a}ten mit Informationen {\"u}ber die Phase der Wellenfunktion im Impulsraum, die durch zus{\"a}tzliche Experimente oder rechnerisch gewonnen werden k{\"o}nnen, l{\"a}sst sich durch eine Fouriertransformation ein dreidimensionales Bild des Orbitals generieren, wie Schritt f{\"u}r Schritt gezeigt wird. Im Zuge eines Photoemissionsprozesses kann das Molek{\"u}l in einen angeregten vibronischen Zustand {\"u}bergehen. Mittels Photoemissionsexperimenten mit hoher Energieaufl{\"o}sung lassen sich Unterschiede zwischen den Impulsverteilungen der schwingenden Molek{\"u}le und denen im vibronischen Grundzustand feststellen. Ein Vergleich der Messdaten mit Simulationen kann die Identifikation der angeregten Schwingungsmode erm{\"o}glichen, was eine neue Methode darstellt, Erkenntnisse {\"u}ber die Elektron-Phonon-Kopplung in molekularen Materialien zu gewinnen.}, subject = {ARPES}, language = {de} } @phdthesis{Schielein2018, author = {Schielein, Richard}, title = {Analytische Simulation und Aufnahmeplanung f{\"u}r die industrielle R{\"o}ntgencomputertomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169236}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {R{\"o}ntgencomputertomographie (CT) hat in ihrer industriellen Anwendung ein sehr breites Spektrum m{\"o}glicher Pr{\"u}fobjekte. Ziel einer CT-Messung sind dreidimensionale Abbilder der Verteilung des Schw{\"a}chungskoeffizienten der Objekte mit m{\"o}glichst großer Genauigkeit. Die Parametrierung eines CT-Systems f{\"u}r ein optimales Messergebnis h{\"a}ngt stark vom zu untersuchenden Objekt ab. Eine Vorhersage der optimalen Parameter muss die physikalischen Wechselwirkungen mit R{\"o}ntgenstrahlung des Objektes und des CT-Systems ber{\"u}cksichtigen. Die vorliegende Arbeit befasst sich damit, diese Wechselwirkungen zu modellieren und mit der M{\"o}glichkeit den Prozess zur Parametrierung anhand von G{\"u}temaßen zu automatisieren. Ziel ist eine simulationsgetriebene, automatische Parameteroptimierungsmethode, welche die Objektabh{\"a}ngigkeit ber{\"u}cksichtigt. Hinsichtlich der Genauigkeit und der Effizienz wird die bestehende R{\"o}ntgensimulationsmethodik erweitert. Es wird ein Ansatz verfolgt, der es erm{\"o}glicht, die Simulation eines CT-Systems auf reale Systeme zu kalibrieren. Dar{\"u}ber hinaus wird ein Modell vorgestellt, welches zur Berechnung der zweiten Ordnung der Streustrahlung im Objekt dient. Wegen des analytischen Ansatzes kann dabei auf eine Monte-Carlo Methode verzichtet werden. Es gibt in der Literatur bisher keine eindeutige Definition f{\"u}r die G{\"u}te eines CT-Messergebnisses. Eine solche Definition wird, basierend auf der Informationstheorie von Shannon, entwickelt. Die Verbesserungen der Simulationsmethodik sowie die Anwendung des G{\"u}temaßes zur simulationsgetriebenen Parameteroptimierung werden in Beispielen erfolgreich angewendet beziehungsweise mittels Referenzmethoden validiert.}, subject = {Computertomografie}, language = {de} }