@article{Sequeira2021, author = {Sequeira, Vasco}, title = {When fat meets the engine: implications of dietary rumenic acid on myosin-targeting therapies in heart failure}, series = {Journal of Physiology}, volume = {599}, journal = {Journal of Physiology}, number = {15}, doi = {10.1113/JP281846}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259693}, pages = {3635-3636}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{BrodehlPourHakimiStanasiuketal.2019, author = {Brodehl, Andreas and Pour Hakimi, Seyed Ahmad and Stanasiuk, Caroline and Ratnavadivel, Sandra and Hendig, Doris and Gaertner, Anna and Gerull, Brenda and Gummert, Jan and Paluszkiewicz, Lech and Milting, Hendrik}, title = {Restrictive cardiomyopathy is caused by a novel homozygous desmin (DES) mutation p.Y122H leading to a severe filament assembly defect}, series = {Genes}, volume = {10}, journal = {Genes}, number = {11}, issn = {2073-4425}, doi = {10.3390/genes10110918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193121}, year = {2019}, abstract = {Here, we present a small Iranian family, where the index patient received a diagnosis of restrictive cardiomyopathy (RCM) in combination with atrioventricular (AV) block. Genetic analysis revealed a novel homozygous missense mutation in the DES gene (c.364T > C; p.Y122H), which is absent in human population databases. The mutation is localized in the highly conserved coil-1 desmin subdomain. In silico, prediction tools indicate a deleterious effect of the desmin (DES) mutation p.Y122H. Consequently, we generated an expression plasmid encoding the mutant and wildtype desmin formed, and analyzed the filament formation in vitro in cardiomyocytes derived from induced pluripotent stem cells and HT-1080 cells. Confocal microscopy revealed a severe filament assembly defect of mutant desmin supporting the pathogenicity of the DES mutation, p.Y122H, whereas the wildtype desmin formed regular intermediate filaments. According to the guidelines of the American College of Medical Genetics and Genomics, we classified this mutation, therefore, as a novel pathogenic mutation. Our report could point to a recessive inheritance of the DES mutation, p.Y122H, which is important for the genetic counseling of similar families with restrictive cardiomyopathy caused by DES mutations.}, language = {en} } @article{KolokotronisPlutaKlopockietal.2020, author = {Kolokotronis, Konstantinos and Pluta, Natalie and Klopocki, Eva and Kunstmann, Erdmute and Messroghli, Daniel and Maack, Christoph and Tejman-Yarden, Shai and Arad, Michael and Rost, Simone and Gerull, Brenda}, title = {New Insights on Genetic Diagnostics in Cardiomyopathy and Arrhythmia Patients Gained by Stepwise Exome Data Analysis}, series = {Journal of Clinical Medicine}, volume = {9}, journal = {Journal of Clinical Medicine}, number = {7}, doi = {10.3390/jcm9072168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236094}, year = {2020}, abstract = {Inherited cardiomyopathies are characterized by clinical and genetic heterogeneity that challenge genetic diagnostics. In this study, we examined the diagnostic benefit of exome data compared to targeted gene panel analyses, and we propose new candidate genes. We performed exome sequencing in a cohort of 61 consecutive patients with a diagnosis of cardiomyopathy or primary arrhythmia, and we analyzed the data following a stepwise approach. Overall, in 64\% of patients, a variant of interest (VOI) was detected. The detection rate in the main sub-cohort consisting of patients with dilated cardiomyopathy (DCM) was much higher than previously reported (25/36; 69\%). The majority of VOIs were found in disease-specific panels, while a further analysis of an extended panel and exome data led to an additional diagnostic yield of 13\% and 5\%, respectively. Exome data analysis also detected variants in candidate genes whose functional profile suggested a probable pathogenetic role, the strongest candidate being a truncating variant in STK38. In conclusion, although the diagnostic yield of gene panels is acceptable for routine diagnostics, the genetic heterogeneity of cardiomyopathies and the presence of still-unknown causes favor exome sequencing, which enables the detection of interesting phenotype-genotype correlations, as well as the identification of novel candidate genes.}, language = {en} } @article{WasmusDudek2020, author = {Wasmus, Christina and Dudek, Jan}, title = {Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies}, series = {Life}, volume = {10}, journal = {Life}, number = {11}, issn = {2075-1729}, doi = {10.3390/life10110277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219286}, year = {2020}, abstract = {The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95\% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.}, language = {en} } @article{BrodehlMeshkovMyasnikovetal.2021, author = {Brodehl, Andreas and Meshkov, Alexey and Myasnikov, Roman and Kiseleva, Anna and Kulikova, Olga and Klauke, B{\"a}rbel and Sotnikova, Evgeniia and Stanasiuk, Caroline and Divashuk, Mikhail and Pohl, Greta Marie and Kudryavtseva, Maria and Klingel, Karin and Gerull, Brenda and Zharikova, Anastasia and Gummert, Jan and Koretskiy, Sergey and Schubert, Stephan and Mershina, Elena and G{\"a}rtner, Anna and Pilus, Polina and Laser, Kai Thorsten and Sinitsyn, Valentin and Boytsov, Sergey and Drapkina, Oxana and Milting, Hendrik}, title = {Hemi- and homozygous loss-of-function mutations in DSG2 (desmoglein-2) cause recessive arrhythmogenic cardiomyopathy with an early onset}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms22073786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285279}, year = {2021}, abstract = {About 50\% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these patients are frequently unknown and a genetic contribution might be underestimated. Here, we used a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism (SNP) arrays for the genetic analysis of two independent index patients without familial medical history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2-c.378+1G>T) in the first patient and a nonsense mutation (DSG2-p.L772X) in combination with a large deletion in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases, which might contribute to the hidden medical history in both families. This is the first report about these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore, we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for ACM index patients without obvious familial medical history. In the future, this finding might has relevance for the genetic counseling of similar cases.}, language = {en} } @article{BrodehlGerull2022, author = {Brodehl, Andreas and Gerull, Brenda}, title = {Genetic insights into primary restrictive cardiomyopathy}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {8}, issn = {2077-0383}, doi = {10.3390/jcm11082094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270621}, year = {2022}, abstract = {Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.}, language = {en} }