@phdthesis{Schindler2022, author = {Schindler, Dorothee}, title = {Water Oxidation with Multinuclear Ruthenium Catalysts}, doi = {10.25972/OPUS-23309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233093}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In terms of the need of environmentally benign renewable and storable energy sources, splitting of water into hydrogen and oxygen by using sunlight is a promising approach. Hereby, water oxidation catalysts (WOCs) are required to perform the water oxidation comprising the transfer of four electrons to provide the reducing equivalents for producing hydrogen. The class of Ru(bda) (bda = 2,2'-bipyridine-6,6'-dicarboxylate) catalysts has proven to be efficient for this reaction. In this thesis, ligand exchange processes in Ru(bda) complexes have been analyzed and the formation of multinuclear macrocyclic WOCs was studied. Based on the knowledge acquired by these studies, new multinuclear cyclic Ru(bda) complexes have been synthesized and their catalytic efficiencies in homogeneous water oxidation have been investigated. Going one step further for setting up functional devices, molecular WOCs have been immobilized on conducting or semiconducting supporting materials. Direct anchoring on carbon nanotubes generated a promising materials for further applications.}, subject = {Rutheniumkomplexe}, language = {en} } @article{NollKrauseBeuerleetal.2022, author = {Noll, Niklas and Krause, Ana-Maria and Beuerle, Florian and W{\"u}rthner, Frank}, title = {Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis}, series = {Nature Catalysis}, journal = {Nature Catalysis}, edition = {accepted version}, doi = {10.1038/s41929-022-00843-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302897}, year = {2022}, abstract = {Inspired by the proficiency of natural enzymes, mimicking of nanoenvironments for precise substrate preorganisation is a promising strategy in catalyst design. However, artificial examples of enzyme-like activation of H\(_2\)O molecules for the challenging oxidative water splitting reaction are hardly explored. Here, we introduce a mononuclear Ru(bda) complex (M1, bda: 2,2'-bipyridine-6,6'-dicarboxylate) equipped with a bipyridine-functionalized ligand to preorganize H\(_2\)O molecules in front of the metal center as in enzymatic clefts. The confined pocket of M1 accelerates chemically driven water oxidation at pH 1 by facilitating a water nucleophilic attack pathway with a remarkable turnover frequency of 140 s\(^{-1}\) that is comparable to the oxygen-evolving complex of photosystem II. Single crystal X-ray analysis of M1 under catalytic conditions allowed the observation of a 7th H\(_2\)O ligand directly coordinated to a RuIII center. Via a well-defined hydrogen-bonding network, another H\(_2\)O substrate is preorganized for the crucial O-O bond formation via nucleophilic attack.}, language = {en} } @article{KarakStepanenkoAddicoatetal.2022, author = {Karak, Suvendu and Stepanenko, Vladimir and Addicoat, Matthew A. and Keßler, Philipp and Moser, Simon and Beuerle, Florian and W{\"u}rthner, Frank}, title = {A Covalent Organic Framework for Cooperative Water Oxidation}, series = {Journal of the American Chemical Society}, volume = {144}, journal = {Journal of the American Chemical Society}, number = {38}, issn = {0002-7863}, doi = {10.1021/jacs.2c07282}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287591}, pages = {17661-17670}, year = {2022}, abstract = {The future of water-derived hydrogen as the "sustainable energy source" straightaway bets on the success of the sluggish oxygen-generating half-reaction. The endeavor to emulate the natural photosystem II for efficient water oxidation has been extended across the spectrum of organic and inorganic combinations. However, the achievement has so far been restricted to homogeneous catalysts rather than their pristine heterogeneous forms. The poor structural understanding and control over the mechanistic pathway often impede the overall development. Herein, we have synthesized a highly crystalline covalent organic framework (COF) for chemical and photochemical water oxidation. The interpenetrated structure assures the catalyst stability, as the catalyst's performance remains unaltered after several cycles. This COF exhibits the highest ever accomplished catalytic activity for such an organometallic crystalline solid-state material where the rate of oxygen evolution is as high as ∼26,000 μmol L\(^{-1}\) s\(^{-1}\) (second-order rate constant k ≈ 1650 μmol L s\(^{-1}\) g\(^{-2}\)). The catalyst also proves its exceptional activity (k ≈ 1600 μmol L s\(^{-1}\) g\(^{-2}\)) during light-driven water oxidation under very dilute conditions. The cooperative interaction between metal centers in the crystalline network offers 20-30-fold superior activity during chemical as well as photocatalytic water oxidation as compared to its amorphous polymeric counterpart.}, language = {en} }