@phdthesis{Weichhold2023, author = {Weichhold, Jan Lukas}, title = {Injectable calcium phosphate-based bone replacement cements}, doi = {10.25972/OPUS-32661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The human body has very good self-healing capabilities for numerous different injuries to a variety of different tissues. This includes the main human mechanical framework, the skeleton. The skeleton is limited in its healing without additional aid by medicine mostly by the defect size. When the defect reaches a size above 2.5 cm the regeneration of the defect ends up faulty. Here is where implants, defect fillers and other support approaches developed in medicine can help the body to heal the big defect still successfully. Usually sturdy implants (auto-/allo-/xenogenic) are implanted in the defect to bridge the distance, but for auto- and allogenic implants a suitable donor site must be found and for all sources the implant needs to be shaped into the defect specific site to ensure a perfect fit, the best support and good healing. This shaping is very time consuming and prone to error, already in the planning phase. The use of a material that is moldable and sets in the desired shape shortly after applying negates these disadvantages. Cementitious materials offer exactly this property by being in a pasty stage after the powder and liquid components have been mixed and the subsequently hardening to a solid implant. These properties also enable the extrusion, and therefore may also enable the injection, of the cement via a syringe in a minimal invasive approach. To enable a good injection of the cement modifications are necessary. This work aimed to modify commonly used calcium phosphate-based cement systems based on α-TCP (apatitic) and β-TCP (brushitic). These have been modified with sodium phytate and phytic acid, respectively. Additionally, the α-TCP system has been modified with sodium pyrophosphate, in a second study, to create a storable aqueous paste that can be activated once needed with a highly concentrated sodium orthophosphate solution. The powder phase of the α-TCP cement system consisted of nine parts α-TCP and one part CDHA. These were prepared to have different particle sizes and therefore enable a better powder flowability through the bimodal size distribution. α-TCP had a main particle size of 20 μm and CDHA of 2.6 μm. The modification with sodium phytate led to an adsorption of phytate ions on the surface of the α-TCP particles, where they started to form complexes with the Ca2+ ions in the solution. This adsorption had two effects. The first was to make the calcium ions unavailable, preventing supersaturation and ultimately the precipitation of CDHA what would lead to the cement hardening. The second was the increase of the absolute value of the surface charge, zeta potential, of the powder in the cement paste. Here a decrease from +3 mV to -40 mV could be measured. A strong value for the zeta potential leads to a higher repulsion of similarly charged particles and therefore prevents powder agglomeration and clogging on the nozzle during injection. These two modifications (bimodal particles size distribution and phytic acid) lead to a significant increase in the paste injectability. The unmodified paste was injectable for 30 \% only, where all modified pastes were practically fully injectable ~90 \% (the residual paste remained in the nozzle, while the syringe plunger already reached the end of the syringe). A very similar observation could be made for the β-TCP system. This system was modified with phytic acid. The zeta potential was decreased even stronger from -10 ± 1.5 mV to -71.5 ± 12 mV. The adsorption of the phytate ions and subsequent formation of chelate complexes with the newly dissolved Ca2+ ions also showed a retarding effect in the cements setting reaction. Where the unmodified cement was not measurable in the rheometer, as the reaction was faster than the measurement setup (~1.5 min), the modified cements showed a transition through the gel point between 3-6 min. This means the pastes stayed between 2 and 4 times longer viscous than without the modification. Like with the first cement system also here the effects of the phytate addition showed its beneficial influence in the injectability measurement. The unmodified cement was not injectable at all, due to the same issue already encountered at the rheology measurements, but all modified pastes were fully injectable for at least 5 min (lowest phytate concentration) and at least 10 min (all other concentrations) after the mixing of powder and liquid. The main goal of the last modification with sodium pyrophosphate was to create a paste that was stable in aqueous environment without setting until the activation takes place, but it should still show good injectability as this was the desired way of application after activation. Like before also the zeta potential changed after the addition of pyrophosphate. It could be lowered from -22 ± 2mV down to -61 to -68 ± 4mV (depending on the pyrophosphate concentration). The pastes were stored in airtight containers at room temperature and checked for their phase composition over 14 days. The unmodified paste showed a beginning phase conversion to hydroxyapatite between 7 and 14 days. All other pastes were still stable and unreacted. The pastes were activated with a high concentrated (30 wt\%) sodium orthophosphate solution. After the activation the pastes were checked for their injectability and showed an increase from -57 ± 11\% for the unmodified paste to -89 ± 3\% (practically fully injectable as described earlier) for the best modified paste (PP005). It can be concluded that the goal of enabling full injection of conventional calcium phosphate bone cement systems was reached. Additional work produced a storage stable paste that still ensures full injectability. Subsequent work already used the storable paste and modified it with hyaluronic acid to create an ink for 3D extrusion printing. The first two cement systems have also already been investigated in cell culture for their influence on osteoblasts and osteoclasts. The next steps would have to go more into the direction of translation. Figuring out what properties still need to be checked and where the modification needs adjustment to enable a clinical use of the presented systems.}, subject = {Calciumphosphat}, language = {en} } @phdthesis{Mittmann2023, author = {Mittmann, Silvia}, title = {Etablierung von Hydroxylapatit-Pr{\"u}fk{\"o}rpern zur in-vitro Qualifizierung von Knochenklebern}, doi = {10.25972/OPUS-29914}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299140}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Im Rahmen dieser Arbeit sollte herausgefunden werden, inwiefern Calciumorthophosphatzemente (CPC) daf{\"u}r geeignet sind, um als Pr{\"u}fk{\"o}rper zur Qualifizierung von Knochenklebern zu dienen, und worin ihre Limitationen bestehen. Dazu sollte nicht nur ein materieller Vergleich verschiedener hydroxylapatitbildender Zemente mit Knochen erfolgen. Es sollte auch das Adh{\"a}sionsverhalten neuartiger Knochenkleber auf den verschiedenen Pr{\"u}fk{\"o}rpermaterialien verglichen werden, um m{\"o}gliche R{\"u}ckschl{\"u}sse f{\"u}r die Eignung als standardisierbares in-vitro Pr{\"u}fk{\"o}rpermaterial ziehen zu k{\"o}nnen. Gegenstand der Untersuchung war ein α-Tricalciumphosphat (α-TCP)-System und ein Tetracalciumphosphat (TTCP)-System welche im Rahmen einer Zement-Abbindereaktion calciumdefizit{\"a}ren Hydroxylapatit (CDHA) bzw. st{\"o}chiometrischen Hydroxylapatit (HA) bilden. Die Materialien wurden dazu verwendet Pr{\"u}fk{\"o}rperteile in Form von Zylindern (5 x 5 mm) und Pl{\"a}ttchen (20 x 10 x 5 mm) herzustellen, die dann mit verschiedenen Knochenklebern verklebt werden konnten. Der st{\"a}rkste der verwendeten Kleber war ein Cyanoacrylat-Kleber (Truglue®). Er erzielte auf Pr{\"u}fk{\"o}rpern aus Knochen nach 24-st{\"u}ndiger Lagerung in PBS mittlere Abscherfestigkeiten von ca. 4,22 ± 1,92 MPa. Als zweitst{\"a}rkster Kleber erwies sich ein neuartiger zementbasierter Kleber, der aus w{\"a}rmebehandeltem Trimagnesiumphosphat-Hydrat und Phosphoserin bestand. Dieser Kleber erzielte unter den gleichen Umst{\"a}nden mittlere Abscherfestigkeiten von ca. 1,89 ± 0,29 MPa. Etwas schw{\"a}cher schnitt ein ebenfalls neuartiger zementbasierter Kleber ab, der aus dem Magnesiumphosphat Farringtonit, sowie aus Magnesiumoxid und 25 \% Phytins{\"a}ure bestand. Dieser Kleber erzielte mittlere Abscherfestigkeiten von ca. 0,51 ± 0,16 MPa. Insgesamt haben die Untersuchungen gezeigt, dass die in-vitro Qualifizierung von Knochenklebern unter Verwendung von Pr{\"u}fk{\"o}rpern aus Zement m{\"o}glich w{\"a}re. Die Pr{\"u}fk{\"o}rper aus CDHA vereinten die meisten Vorteile und w{\"a}ren f{\"u}r Klebesysteme mit Abscherfestigkeiten von bis zu 2 MPa geeignet. Dabei erzeugten die Knochenkleber auf CDHA zwar abweichende Abscherfestigkeiten als auf Knochen, doch ließ sich ein vergleichbarer Trend bei stets reduzierten Varianzen erkennen. Durch die gute Konsistenz der Zementpaste war die Herstellung homogener Pr{\"u}fk{\"o}rper m{\"o}glich. Aufgrund der Stabilit{\"a}t von CDHA unter w{\"a}ssrigen Bedingungen konnten Langzeitversuche ohne Einschr{\"a}nkungen vorgenommen werden. Die Limitationen der Pr{\"u}fk{\"o}rper aus CDHA bestanden allerdings darin, dass sie nicht f{\"u}r Abscherversuche von st{\"a}rkeren Klebern geeignet waren. In solchen F{\"a}llen versagten die Pr{\"u}fk{\"o}rper noch bevor die maximale Abscherfestigkeit des jeweiligen Klebers gemessen werden konnte.}, subject = {Knochenersatz}, language = {de} }