@phdthesis{Hofmann2023, author = {Hofmann, Julian}, title = {Synthesis of Sterubin, Flavonoid Hybrids, and Curcumin Bioisosteres and Characterization of their Neuroprotective Effects}, doi = {10.25972/OPUS-26664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266641}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Alzheimer´s disease (AD) is a neurodegenerative disease and the most common form of dementia with still no preventive or curative treatment. Besides several risk factors, age is one of the major risks for AD and with an aging society, there is an urgent need for disease modifying agents. The strategy to address only one target within the intertwined network of AD failed so far. Natural products especially the phytochemical flavonoids, which are poly-phenolic natural products, have shown great potential as disease modifying agents against neurodegenerative disorders like Alzheimer´s disease (AD) with activities even in vivo. Flavonoids are produced by many plants and the native Californian plant Eriodictyon californicum is particularly rich in flavonoids. One of the major flavonoids of E. californicum is sterubin, a very potent agent against oxidative stress and inflammation, two hallmarks and drivers of AD and neurodegeneration. Herein, racemic sterubin was synthesized and separated into its pure (R)- and (S)-enantiomer by chiral HPLC. The pure enantiomers showed comparable neuroprotection in vitro with no significant differences. The stereoisomers were configurationally stable in methanol, but fast racemization was observed in culture medium. Moreover, the activity of sterubin was investigated in vivo, in an AD mouse model. Sterubin showed a significant positive impact on short- and long-term memory at low dosages. A promising concept for the increase of activity of single flavonoids is hybridization with aromatic acids like cinnamic or ferulic acids. Hybridization of the natural products taxifolin and silibinin with cinnamic acid led to an overadditive effect of these compounds in phenotypic screening assays related to neurodegeneration and AD. Because there are more potent agents as taxifolin or silibinin, the hybrids were further developed, and different flavonoid cinnamic acid hybrids were synthesized. The connection between flavonoids and cinnamic acid was achieved by an amide instead of a labile ester to improve the stability towards hydrolysis to gain better "druggability" of the compounds. To investigate the oxidation state of the C-ring of the flavonoid part, the dehydro analogues of the respective hybrids were also synthesized. The compounds show neuroprotection against oxytosis, ferroptosis and ATP-depletion in the murine hippocampal cell line HT22. While no overall trend within the flavanones compared to the flavones could be assigned, the taxifolin and the quercetin derivative were the most active compounds in course of all assays. The quercetin derivate even shows greater activity than the taxifolin derivate in every assay. As desired no hydrolysis product was found in cellular uptake experiments after 4h, whereas different metabolites were found. The last part of this work focused on synthetic bioisoteres of the natural product curcumin. Due to the drawbacks of curcumin and flavonoids arising from poor pharmacokinetics, rapid metabolism and sometimes instability in aqueous medium, we have examined the biological activity of azobenzene compounds designed as bioisoteres of curcumin, carrying the pharmacophoric catechol group of flavonoids. These bioisosteres exceeded their parent compounds in counteracting intracellular oxidative stress, neuroinflammation and amyloid-beta aggregation. By incorporating an azobenzene moiety and the isosteric behaviour to the natural parent compounds, these compounds may act as molecular tools for further investigation towards the molecular mode of action of natural products.}, subject = {Organische Synthese}, language = {en} }