@phdthesis{RamaniMohan2021, author = {Ramani Mohan, Ramkumar}, title = {Effect of Mechanical Stress On Stem Cells to Improve Better Bone Regeneration}, doi = {10.25972/OPUS-24013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240134}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Critical size bone defects and nonunion fractures remain difficult to treat. Although cell-loaded bone substitutes have improved bone ingrowth and formation, the lack of methods for achieving viability and the uniform distribution of cells in the scaffold limits their use as bone grafts. In addition, the predominant mechanical stimulus that drives early osteogenic cell maturation has not been clearly identified. Further, it is challenging to evaluate mechanical stimuli (i.e., deformation and fluid-flow-induced shear stress) because they are interdependent. This thesis compares different mechanical stimuli applied to cell-seeded scaffolds to develop bone grafts efficiently for the treatment of critical size bone defects. It also seeks to understand how deformation strain and interstitial fluid-flow-induced shear stress promote osteogenic lineage commitment. In this thesis, different scaffolds were seeded with primary human bone marrow mesenchymal stem cells (BM-MSCs) from different donors and subjected to static and dynamic culture conditions. In contrast with the static culture conditions, homogenous cell distributions were accomplished under dynamic culture conditions. Additionally, the induction of osteogenic lineage commitment without the addition of soluble factors was observed in the bioreactor system after one week of cell culture. To determine the role of mechanical stimuli, a bioreactor was developed to apply mechanical deformation force to a mesenchymal stem sell (MSC) line (telomerase reverse transcriptase (TERT)) expressing a strain-responsive AP-1 luciferase reporter construct on porous scaffolds. Increased luciferase expression was observed in the deformation strain compared with the shear stress strain. Furthermore, the expression of osteogenic lineage commitment markers such as osteonectin, osteocalcin (OC), osteopontin, runt-related transcription factor 2 (RUNX2), alkaline phosphate (AP), and collagen type 1 was significantly downregulated in the shear stress strain compared with the deformation strain. These findings establish that the deformation strain was the predominant stimulus causing skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation. Finally, these findings were used to develop a bioreactor in vitro test system in which the effect of medication on osteoporosis could be tested. Primary human BM-MSCs from osteoporotic donors were subjected to strontium ranelate (an osteoporotic drug marketed as ProtelosĀ®). Increased expression of collagen type 1 and calcification was seen in the drugtreated osteoporotic stem cells compared with the nondrug-treated osteoporotic stem cells. Thus, this bioreactor technology can easily be adapted into an in vitro osteoporotic drug testing system.}, language = {en} } @phdthesis{Gensler2023, author = {Gensler, Marius E.}, title = {Simultaneous printing of tissue and customized bioreactor}, doi = {10.25972/OPUS-28019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Additive manufacturing processes such as 3D printing are booming in the industry due to their high degree of freedom in terms of geometric shapes and available materials. Focusing on patient-specific medicine, 3D printing has also proven useful in the Life Sciences, where it exploits the shape fidelity for individualized tissues in the field of bioprinting. In parallel, the current systems of bioreactor technology have adapted to the new manufacturing technology as well and 3D-printed bioreactors are increasingly being developed. For the first time, this work combines the manufacturing of the tissue and a tailored bioreactor, significantly streamlining the overall process and optimally merging the two processes. This way the production of the tissues can be individualized by customizing the reactor to the tissue and the patient-specific wound geometry. For this reason, a common basis and guideline for the cross-device and cross-material use of 3D printers was created initially. Their applicability was demonstrated by the iterative development of a perfusable bioreactor system, made from polydimethylsiloxane (PDMS) and a lignin-based filament, into which a biological tissue of flexible shape can be bioprinted. Cost-effective bioink-replacements and in silico computational fluid dynamics simulations were used for material sustainability and shape development. Also, nutrient distribution and shear stress could be predicted in this way pre-experimentally. As a proof of functionality and adaptability of the reactor, tissues made from a nanocellulose-based CellinkĀ® Bioink, as well as an alginate-based ink mixed with Me-PMeOx100-b-PnPrOzi100-EIP (POx) (Alginate-POx bioink) were successfully cultured dynamically in the bioreactor together with C2C12 cell line. Tissue maturation was further demonstrated using hMSC which were successfully induced to adipocyte differentiation. For further standardization, a mobile electrical device for automated media exchange was developed, improving handling in the laboratory and thus reduces the probability of contamination.}, subject = {3 D bioprinting}, language = {en} }