@phdthesis{Wahl2019, author = {Wahl, Joachim}, title = {The Use of Ionic Liquids in Capillary Electrophoresis Enantioseparation}, doi = {10.25972/OPUS-17639}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Two chiral chemical molecules being mirror images of each other, also referred to as enantiomers, may have different pharmacokinetic, pharmacodynamic, and toxicological effects. Thus, pharmaceutical manufacturers and authorities are increasingly interested in the approval of enantiopure drugs. However, the isomeric purity and the limits for isomeric impurities have to be specified applying enantioselective analytical methods, such as capillary electrophoresis. The separation of enantiomers in capillary electrophoresis may be improved by the addition of ionic liquids to the background electrolyte. The aim of this work was to investigate the influence of different separation conditions on the enantioseparation of phenethylamines in background electrolytes containing ionic liquids based on tetrabutylammonium cations. Best chiral separations were achieved at acidic pH values using phosphate buffers containing 125 mmol/L tetrabutylammonium based salts. Different reasons explaining enhanced enantioseparations in buffers containing ionic liquids were found. First, due to an improvement of the cyclodextrin solubility, the addition of ionic liquids to the background electrolyte enables the use of higher concentrations of these chiral selector. Furthermore, the adsorption of tetrabutylammonium cations to the negatively charged capillary surface results in a reduction of the electroosmotic flow. Hence, the resulting prolongation of migration times leads to a longer period of time for the separation of temporarily formed diastereomeric analyte cyclodextrin complexes, which yields improved enantioseparation. Additionally, due to a decrease of the adsorption of positively charged phenethylamine analyte molecules to capillary surface silanol groups, the adsorption of ionic liquid cations inhibits peak broadening. A further reason explaining an enhanced enantioseparation by the addition of ionic liquids to the background electrolyte is a competition between tetrabutylammonium cations and analyte enantiomers for the inclusion into cyclodextrin cavities. Furthermore, the influence of different chiral counterions, combined with tetrabutylammonium cations, on the enantioseparation of phenethylamines was investigated. Solely anions based on the basic proteinogenic amino acids L lysine and L arginine yielded chiral separation results superior to those achieved using achiral tetrabutylammonium chloride as background electrolyte additive. Especially the application of tetrabutylammonium L argininate gave very good enantioseparations of all investigated ephedrine derivatives, which might be explained by the ability of L arginine to affect the formation of complexes between analytes and cyclodextrins. Besides the investigation of the influence of ionic liquids on the enantioseparation, complexes between phenethylamine enantiomers and β cyclodextrin derivatives were characterized by affinity capillary electrophoresis. The binding constants between analyte enantiomers and cyclodextrins and the electrophoretic mobilities of the temporarily formed complexes were determined and compared to the observed chiral resolution values. While neither the calculated binding constants nor their differences correlated with the quality of the enantioseparation, a strong correlation between the differences of the electrophoretic mobilities of the complexes and the chiral resolution values was found.}, subject = {Kapillarelektrophorese}, language = {en} } @phdthesis{Urlaub2021, author = {Urlaub, Jonas}, title = {Development of analytical methods for the quality assessment of mineral oil based excipients and mechanochemically stressed active pharmaceutical ingredients}, doi = {10.25972/OPUS-24346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243465}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {For the quality assurance of substances for pharmaceutical use, a variety of analytical techniques are available to address specific analytical problems. In this field of application, liquid chromatography (LC) stands out as the gold standard in the pharmaceutical industry. Various detectors can be employed, which are e.g. based on UV/Vis spectroscopy for the examination of molecules with a chromophore, or mass spectrometry (MS) for structural elucidation of analytes. For the separation of enantiomers, the use of capillary electrophoresis (CE) may be more favorable due to the high separation efficiency and easy-to-use and comparatively inexpensive chiral selectors, in contrast to chiral columns for LC, which are usually very expensive and limited to a restricted number of analytes. For structure elucidation in impurity profiling, one- and multidimensional 1H NMR spectroscopy is a valuable tool as long as the analyte molecule has got nuclei that can be detected, which applies for the magnitude of organic pharmaceutical substances. For the evaluation of the amount of mineral oil aromatic hydrocarbons (MOAH) in various paraffin samples from different suppliers, a straightforward method based on 1H NMR spectroscopy was elaborated. The MOAH/MOSH ratio was used to indicate the amount of MOAH of paraffins and to evaluate the extent of refining. In addition, a representative paraffin sample was measured without sample solvent at high temperatures (about 340 K) to avoid the interfering residual solvent signals in the spectral regions of interest. The results of both methods were in good accordance. Moreover, the 1H NMR results were complemented with the UV measurements from the purity testing of paraffins according to the DAB 8. Correlations of the NMR and UV spectroscopic data indicated a linear relationship of both methods for the determination of MOAH in paraffins. Finally, the 1H NMR data was evaluated by principal component analysis (PCA) to explore differences within the paraffin samples and the spectral regions in the 1H NMR spectrum which are responsible for the formation of groups. It could be found that most variation is due to the MOSH of the paraffins. The PCA model was capable of differentiating between soft, liquid and solid paraffins on the one hand and between natural and synthetic liquid paraffins on the other hand. The impurity profiling of L-ascorbic acid 2-phosphate magnesium (A2PMg) was performed by means of one- and two-dimensional NMR spectroscopy. Several ethylated impurities could be detected, which were likely to be formed during synthesis of A2PMg. The structures of two of the ethylated impurities were identified as ascorbic acid 2-phosphate ethyl ester and ethanol, (residual solvent from synthesis). NMR spectroscopic studies of the fractions obtained from preparative HPLC of A2PMg revealed two additional impurities, which were identified as phosphorylated derivatives of ascorbic acid, ascorbic acid 3,5-phosphate and ascorbic acid 5-phosphate. Solid state mechanochemistry as an alternative approach for stress testing was applied on the drug substances S-Ibuprofen (Ibu) and Clopidogrel (CLP) using a ball mill, in order to study their degradation profile: First, the isomerization of S-Ibu was investigated, which was stressed in the solid state applying several milling frequencies and durations under basic, acidic and neutral conditions. For the separation of Ibu enantiomers, a chiral CE method was developed and validated according to ICH Q2(R1). It was found that S-Ibu is overall very stable to isomerization; it shows minor conversion into the R-enantiomer under basic environment applying long milling times and high frequencies. Last, the degradation profile of clopidogrel hydrogen sulfate (CLP) was investigated, which was stressed in the solid state under various oxidative conditions. An already existing HPLC-UV method was adjusted to sufficiently separate the degradation products, which were characterized by means of UV and MS/(MS) detection. Most of the degradation products identified were already reported to result from conventional CLP stress tests. The degradation profile of CLP was mainly influenced by the material of the milling jar and the type of catalyst used.}, subject = {HPLC}, language = {en} }