@phdthesis{Andelovic2024, author = {Andelovic, Kristina}, title = {Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models}, doi = {10.25972/OPUS-30360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly - at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models - two parameters highly influencing plaque development and progression - there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research.}, subject = {H{\"a}modynamik}, language = {en} } @phdthesis{Pres2024, author = {Pres, Sebastian}, title = {Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy}, doi = {10.25972/OPUS-34824}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348242}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Plasmonic nanostructures are considered promising candidates for essential components of integrated quantum technologies because of their ability to efficiently localize broad-band electromagnetic fields on the nanoscale. The resulting local near field can be understood as a spatial superposition of spectrally different plasmon-polariton modes due to the spectrally broad optical excitation, and thus can be described as a classical wave packet. Since plasmon polaritons, in turn, can transmit and receive non-classical light states, the exciting question arises to what extent they have to be described as quantum mechanical wave packets, i.e. as a superposition of different quantum states. But how to probe, characterize and eventually manipulate the quantum state of such plasmon polaritons? Up to now, probing at room temperatures relied completely on analyzing quantum optical properties of the corresponding in-going and out-going far-field photon modes. However, these methods so far only allow a rather indirect investigation of the plasmon-polariton quantum state by means of transfer into photons. Moreover, these indirect methods lack spatial resolution and therefore do not provide on-site access to the plasmon-polariton quantum state. However, since the spectroscopic method of coherent two-dimensional (2D) nanoscopy offers the capability to follow the plasmon- polariton quantum state both in Hilbert space and in space and time domain a complete characterization of the plasmon polariton is possible. In this thesis a versatile coherent 2D nanoscopy setup is presented combining spectral tunability and femtosecond time resolution with spatial resolution on the nanometer scale due to the detection of optically excited nonlinear emitted electrons via photoemission electron microscopy (PEEM). Optical excitation by amplitude- and phase-shaped, systematically-modified and interferometric-stable multipulse sequences is realized, and characterized via Fourier-transform spectral interferometry (FTSI). This linear technique enables efficient data acquisition in parallel to a simultaneously performed experiment. The full electric-field reconstruction of every generated multipulse sequence is used to analyze the effect of non-ideal pulse sequences on the two-dimensional spectral data of population-based multidimensional spectroscopy methods like, e.g., the coherent 2D nanoscopy applied in this thesis. Investigation of the spatially-resolved nonlinear electron emission yield from plasmonic gold nanoresonators by coherent 2D nanoscopy requires a quasi-particle treatment of the addressed plasmon-polariton mode and development of a quantum model to adequately describe the plasmon-assisted multi-quantum electron emission from nanostructures. Good agreement between simulated and experimental data enables to connect certain spectral features to superpositions of non-adjacent plasmon-polariton quantum states, i.e, non-adjacent occupation-number states of the underlying quantized, harmonic oscillator, thus direct probing of the plasmon-polariton quantum wave packet at the location of the nanostructure. This is a necessary step to locally control and manipulate the plasmon-polariton quantum state and thus of general interest for the realization of nanoscale quantum optical devices.}, subject = {Coherent Multidimensional Spectroscopy}, language = {en} } @phdthesis{Bayer2024, author = {Bayer, Florian}, title = {Investigating electromagnetic properties of topological surface states in mercury telluride}, doi = {10.25972/OPUS-35212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352127}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This doctoral thesis investigates magneto-optical properties of mercury telluride layers grown tensile strained on cadmium telluride substrates. Here, layer thicknesses start above the usual quantum well thickness of about 20 nm and have a upper boundary around 100 nm due to lattice relaxation effects. This kind of layer system has been attributed to the material class of three-dimensional topological insulators in numerous publications. This class stands out due to intrinsic boundary states which cross the energetic band gap of the layer's bulk. In order to investigate the band structure properties in a narrow region around the Fermi edge, including possible boundary states, the method of highly precise time-domain Terahertz polarimetry is used. In the beginning, the state of the art of Teraherz technology at the start of this project is discussed, moving on to a detailed description and characterization of the self-built measurement setup. Typical standard deviation of a polarization rotation or ellipticity measurement are on the order of 10 to 100 millidegrees, according to the transmission strength through investigated samples. A range of polarization spectra, depending on external magnetic fields up to 10 Tesla, can be extracted from the time-domain signal via Fourier transformation. The identification of the actual band structure is done by modeling possible band structures by means of the envelope function approximation within the framework of the k·p method. First the bands are calculated based on well-established model parameters and from them the possible optical transitions and expected ellipticity spectra, all depending on external magnetic fields and the layer's charge carrier concentration. By comparing expected with measured spectra, the validity of k·p models with varying depths of detail is analyzed throughout this thesis. The rich information encoded in the ellipitcity spectra delivers key information for the attribution of single optical transitions, which are not part of pure absorption spectroscopy. For example, the sign of the ellipticity signals is linked to the mix of Landau levels which contribute to an optical transition, which shows direct evidence for bulk inversion asymmetry effects in the measured spectra. Throughout the thesis, the results are compared repeatedly with existing publications on the topic. It is shown that the models used there are often insufficient or, in worst case, plainly incorrect. Wherever meaningful and possible without greater detours, the differences to the conclusions that can be drawn from the k·p model are discussed. The analysis ends with a detailed look on remaining differences between model and measurement. It contains the quality of model parameters as well as different approaches to integrate electrostatic potentials that exist in the structures into the model. An outlook on possible future developments of the mercury cadmium telluride layer systems, as well as the application of the methods shown here onto further research questions concludes the thesis.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Kagerer2024, author = {Kagerer, Philipp Thomas}, title = {Two-Dimensional Ferromagnetism and Topology at the Surface of MnBi\(_2\)Te\(_4\) - Bi\(_2\)Te\(_3\) Heterostructures - MBE Growth, Magnetism and Electronic Properties}, doi = {10.25972/OPUS-36012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, a model system of a magnetic topological heterostructure is studied, namely a heterosystem consisting of a single ferromagnetic septuple-layer (SL) of \(MnBi_2Te_4\) on the surface of the three-dimensional topological insulator \(Bi_2Te_3\). Using MBE and developing a specialized experimental setup, the first part of this thesis deals with the growth of \(Bi_2Te_3\) and thin films of \(MnBi_2Te_4\) on \(BaF_2\)-substrates by the co-evaporation of its binary constituents. The structural analysis is conducted along several suitable probes such as X-ray diffraction (XRD, XRR), AFM and scanning tunnelling electron microscopy (STEM). It is furthermore found that the growth of a single septuple-layer of \(MnBi_2Te_4\) on the surface of \(Bi_2Te_3\) can be facilitated. By using X-ray absorption and circular magnetic dichroism (XAS, XMCD), the magnetic properties of \(MnBi_2Te_4\) are explored down to the monolayer limit. The layered nature of the vdW crystal and a strong uniaxial magnetocrystalline anisotropy establish stable out-of plane magnetic order at the surface of \(MnBi_2Te_4\), which is stable even down to the 2D limit. Pushing the material system to there, i.e. a single SL \(MnBi_2Te_4\) further allows to study the phase transition of this 2D ferromagnet and extract its critical behaviour with \(T_c \, = \, 14.89~k\) and \(\beta \, = \, 0.484\). Utilizing bulk crystals of the ferromagnetic \(Fe_3GeTe_2\) as substrate allows to influence, enhance and bias the magnetism in the single SL of \(MnBi_2Te_4\). By growing heterostructures of the type \(MnBi_2Te_4\) -- n layer \(Bi_2Te_3\) -- \(Fe_3GeTe_2\)for n between 0 and 2, it is shown, that a considerable magnetic coupling can be introduced between the \(MnBi_2Te_4\) top-layer and the substrate. Finally the interplay between topology and magnetism in the ferromagnetic extension is studied directly by angle-resolved photoemission spectroscopy. The heterostructure is found to host a linearly dispersing TSS at the centre of the Brillouin zone. Using low temperature and high-resolution ARPES a large magnetic gap opening of \(\sim\) 35 meV is found at the Dirac point of the TSS. By following its temperature evolution, it is apparent that the scaling behaviour coincides with the magnetic order parameter of the modified surface.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Miller2024, author = {Miller, Kirill}, title = {Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) f{\"u}r Anwendungen in nicht von-Neumann-Rechnerarchitekturen}, doi = {10.25972/OPUS-35472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die Dissertation besch{\"a}ftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfl{\"a}che beider {\"U}bergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine F{\"u}lle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfl{\"a}che prozessiert wurde und eine bemerkenswerte Trialit{\"a}t aufweist. Dieses Bauelement kann unter anderem als ein herk{\"o}mmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zus{\"a}tzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall h{\"a}ngt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts l{\"a}sst sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen ver{\"a}ndern. Dar{\"u}ber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine erg{\"a}nzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsstr{\"o}men innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt.}, subject = {Memristor}, language = {de} } @phdthesis{Wagner2024, author = {Wagner, Tim Matthias}, title = {Characterization of 2D antimony lattices}, doi = {10.25972/OPUS-36329}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363292}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Two-dimensional lattices are in the focus of research in modern solid state physics due to their novel and exotic electronic properties with tremendous potential for seminal future applications. Of particular interest within this research field are quantum spin Hall insulators which are characterized by an insulating bulk with symmetry-protected metallic edge states. For electrons within these one-dimensional conducting channels, spin-momentum locking enables dissipationless transport - a property which promises nothing short of a revolution for electronic devices. So far, however, quantum spin Hall materials require enormous efforts to be realized such as cryogenic temperatures or ultra-high vacuum. A potential candidate to overcome these shortcomings are two-dimensional lattices of the topological semi-metal antimony due to their potential to host the quantum spin Hall effect while offering improved resilience against oxidation. In this work, two-dimensional lattices of antimony on different substrates, namely Ag(111), InSb(111) and SiC(0001), are investigated regarding their atomic structure and electronic properties with complimentary surface sensitive techniques. In addition, a systematic oxidation study compares the stability of Sb-SiC(0001) with that of the two-dimensional topological insulators bismuthene-SiC(0001) and indenene-SiC(0001). A comprehensive experimental analysis of the \((\sqrt{3}\times\sqrt{3})R30^\circ\) Sb-Ag(111) surface, including X-ray standing wave measurements, disproves the proclaimed formation of a buckled antimonene lattice in literature. The surface lattice can instead be identified as a metallic Ag\(_2\)Sb surface alloy. Antimony on InSb(111) shows an unstrained Volmer-Weber island growth due to its large lattice mismatch to the substrate. The concomitant moir\'{e} situation at the interface imprints mainly in a periodic height corrugation of the antimony islands which as observed with scanning tunneling microscopy. On islands with various thicknesses, quasiparticle interference patterns allow to trace the topological surface state of antimony down to the few-layer limit. On SiC(0001), two different two-dimensional antimony surface reconstructions are identified. Firstly, a metallic triangular \$1\times1\$ lattice which constitutes the antimony analogue to the topological insulator indenene. Secondly, an insulating asymmetric kagome lattice which represents the very first realized atomic surface kagome lattice. A comparative, systematic oxidation study of elemental (sub-)monolayer materials on SiC(0001) reveals a high sensitivity of indenene and bismuthene to small dosages of oxygen. An improved resilience is found for Sb-SiC(0001) which, however, oxidizes nevertheless if exposed to oxygen. These surface lattices are therefore not suitable for future applications without additional protective measures.}, subject = {Antimon}, language = {en} } @phdthesis{Rueckert2023, author = {R{\"u}ckert, Martin Andreas}, title = {Rotationsdriftspektroskopie}, doi = {10.25972/OPUS-26863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268631}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die wachsende Verf{\"u}gbarkeit von magnetischen Nanopartikeln (MNPs) mit funktionalisierten Partikeloberfl{\"a}chen er{\"o}ffnet weitreichende M{\"o}glichkeiten f{\"u}r chemische, biologische und klinische Analysemethoden. Durch Funktionalisierung kann eine gezielte Interaktion mit Molek{\"u}len bewirkt werden, die im Allgemeinen auch die Beweglichkeit der MNPs ver{\"a}ndern. Methoden zur Charakterisierung von MNPs wie bspw. AC-Suszeptometrie, Magnetorelaxometrie (MRX) oder Magnetic Particle Spectroscopy (MPS) k{\"o}nnen diese {\"A}nderung der Beweglichkeit bei MNPs messen, wenn es sich um MNPs handelt, deren magnetisches Moment im Partikel fixiert ist. Damit ist mit funktionalisierten MNPs indirekt auch die spezifische Messung von Molek{\"u}lkonzentrationen m{\"o}glich. MNPs k{\"o}nnen zudem in biokompatibler Form hergestellt werden und sind dadurch auch als in-vivo Marker einsetzbar. Das 2005 das erste Mal ver{\"o}ffentlichte Magnetic Particle Imaging (MPI) kann als ein mittels Gradientenfeldern um die r{\"a}umliche Kodierung erweitertes MPS betrachtet werden. Dank biokompatibler MNPs handelt es sich dabei um eine in-vivo-taugliche, nicht-invasive Bildgebungsmethode. Mit funktionalisierten MNPs als Marker ist damit im Prinzip auch molekulare Bildgebung m{\"o}glich, die durch Detektion der beteiligten Molek{\"u}le (Biomarker) Stoffwechselprozesse r{\"a}umlich abbilden kann. Im Vergleich zur Bildgebung von Gewebe- und Knochenstrukturen lassen sich die diagnostischen M{\"o}glichkeiten durch molekulare Bildgebung erheblich erweitern. Rotationsdriftspektroskopie (Rotational Drift Spectroscopy, RDS) ist eine in dieser Arbeit entwickelte Methode f{\"u}r die induktive Messung der Beweglichkeit von MNPs in fl{\"u}ssiger Suspension. Es verwendet die Rotationsdrift von MNPs in rotierenden magnetischen Feldern als Grundlage und bietet das Potential die {\"A}nderungen der Beweglichkeit von MNPs mit einer Empfindlichkeit messen zu k{\"o}nnen, welche potentiell um mehrere Gr{\"o}ßenordnungen h{\"o}her sein kann als mit den oben erw{\"a}hnten Verfahren. Die vorliegende Arbeit konzentriert sich auf die Verwendbarkeit dieses Effekts als Spektroskopiemethode. Die Eigenschaften des RDS-Signals sind jedoch auch als Grundlage f{\"u}r r{\"a}umliche Kodierung vielversprechend. In weiterf{\"u}hrenden Projekten soll daher auch die Entwicklung von Rotationsdriftbildgebung (Rotating Drift Imaging, RDI) als ein nicht-invasives Verfahren f{\"u}r molekulare Bildgebung angestrebt werden. Der Grundgedanke von RDS entlehnt sich aus einem in 2006 ver{\"o}ffentlichten Sensordesign basierend auf magnetische Mikropartikel in einem schwachen rotierenden Magnetfeld. Das rotierende Magnetfeld ist dabei so schwach gew{\"a}hlt, dass sich das Partikel aufgrund der viskosen Reibung nicht mehr synchron mit dem externen Feld drehen kann. Die Frequenz der resultierenden asynchronen Rotationsdrift liegt unterhalb der Frequenz des externen Rotationsfelds und ist Abh{\"a}ngig von der viskosen Reibung. Aufgrund dieser Abh{\"a}ngigkeit k{\"o}nnen {\"A}nderungen im Reibungskoeffizienten des Partikels {\"u}ber {\"A}nderungen in der Rotationsdriftfrequenz gemessen werden. RDS zielt darauf ab, diese Rotationsdrift bei suspendierten MNPs {\"u}ber deren makroskopische Magnetisierung messen zu k{\"o}nnen. Damit wird u.a. auch die nicht-invasive Messung von MNPs innerhalb opaker biologischer Proben m{\"o}glich. MNP-Suspensionen sind großzahlige Nanopartikel-ensembles und k{\"o}nnen nicht wie ein einzelnes Mikropartikel gemessen werden. F{\"u}r die induktive Messung ist vor dem Start eine Ausrichtung aller magnetischen Momente n{\"o}tig, da sich deren makroskopische Magnetisierung andernfalls zu Null addiert. Aufgrund von Rotationsdiffusion bleibt diese Ausrichtung nur eine begrenzte Zeit bestehen, so dass auch die eigentliche Messung des RDS-Signals nur eine begrenzte Zeit m{\"o}glich ist. Diese Ausrichtung wurde in den ersten Experimenten durch einen kurzen Magnetfeldpuls erzeugt. In der Empfangsspule ist die Induktion durch das Rotationsfeld typischer Weise um mehrere Gr{\"o}ßenordnungen h{\"o}her als das zu erwartende Signal und muss durch einen Tiefpass unterdr{\"u}ckt werden. In diesem Tiefpassfilter ruft jedoch die Einkopplung des Anfangspulses eine Pulsantwort hervor, die ebenso mehrere Gr{\"o}ßenordnungen des zu erwartenden Signals betragen kann und {\"a}hnlich langsam wie typische Signale abklingt. Die Unterdr{\"u}ckung dieser Pulsantwort stellte in den ersten Experimenten die gr{\"o}ßte H{\"u}rde da. Der erste Aufbau hatte eine Relaisschaltung zur Pulsunterdr{\"u}ckung und resultierte in einer Totzeit von 3 ms zwischen Anfangspuls und Start der Messung. Aufgrund dieser Totzeit waren die ersten Messungen auf gr{\"o}ßere Agglomerate und Sedimente von MNPs beschr{\"a}nkt, da nur in diesem Fall eine hinreichend lange Zerfallsdauer der Probenmagnetisierung vorlag. Das Verhalten derartiger Partikelsysteme ist jedoch aufgrund von mechanischer und magnetischer Interpartikelwechselwirkung vergleichsweise komplex und theoretisch schwer modellierbar. Das prim{\"a}re Zielsystem f{\"u}r RDS hingegen, Eindom{\"a}nenpartikel mit im Partikel fixierter Magnetisierung und Punktsymmetrie bzgl. des Reibungstensors, erlaubt die Aufstellung einer parametrisierten Funktion f{\"u}r den Signalverlauf. Es erm{\"o}glicht somit aufgrund der besseren Berechenbarkeit eine solidere Auswertung des RDS-Signals. Um Eindom{\"a}nenpartikel in w{\"a}ssriger Suspension mit typischen Partikeldurchmessern um 100 nm messen zu k{\"o}nnen ist eine Verk{\"u}rzung der Totzeit auf mindestens 1/10 erforderlich. Prinzipiell kann diese Problematik durch die Verwendung schneller Halbleiterschalter in Verbindung mit einer pr{\"a}zise abstimmbaren induktiven Entkopplung des Spulensystems gemindert werden. Simulationen des RDS-Signals f{\"u}r verschiedene RDS-Sequenzen zeigen jedoch noch zwei weitere M{\"o}glichkeiten auf, die ohne aufw{\"a}ndigen Eingriffe in der Hardware auskommen. Zum einen kann durch orthogonales Frequenzmischen mit geeignetem Frequenz- und Phasenverh{\"a}ltnis eine Ausrichtung der magnetischen Momente bewirkt werden. Da die ben{\"o}tigten Frequenzen vollst{\"a}ndig im Sperrband des Tiefpassfilters liegen k{\"o}nnen, l{\"a}sst sich damit die Pulsantwort bei hinreichend „weichem" Umschalten zwischen der Polarisierungssequenz und der RDS-Sequenz vollst{\"a}ndig vermeiden. Dar{\"u}ber hinaus zeigt sich, dass es bei Anwesenheit eines schwachen Offsetfelds (< 10 \% der Rotationsfeldamplitude) zu einer Ausrichtung der magnetischen Momente kommt, wenn das magnetische Rotationsfeld seine Richtung {\"a}ndert und diese {\"A}nderung nicht abrupt erfolgt, sondern das Rotationsfeld {\"u}bergangsweise in ein linear oszillierendes Feld {\"u}bergeht. Hingegen wird die Wirkung des Offsetfelds durch das Rotationsfeld vor und nach dem Wechsel nahezu vollst{\"a}ndig neutralisiert, so dass damit das St{\"o}rsignale generierende Schalten eines Offsetfelds ersetzt werden kann. Es ist auf diese Weise nicht m{\"o}glich, Echosequenzen zu erzeugen, da hier bei der f{\"u}r Echosequenzen ben{\"o}tigten Richtungsumkehr des Rotationsfelds die zuvor aufgepr{\"a}gte Phasenverteilung durch das Offsetfeld zerst{\"o}rt wird und somit anstelle einer Signalechogenerierung eine neue RDS-Messung gestartet wird. Obwohl es Echosequenzen mit Anfangspuls erlauben, mehr MNP Parameter zu messen, bietet dieser Ansatz dennoch entscheidende Vorteile. So ergibt sich eine massive Vereinfachung der Hardware und es sind bei gleicher Rotationsfrequenz deutlich h{\"o}here Wiederholraten m{\"o}glich. Die Vermeidung von Schaltvorg{\"a}ngen durch die Verwendung von Offsetfeldern erm{\"o}glicht es, mit dem urspr{\"u}nglichem Aufbau auch Partikelsysteme zu untersuchen, deren Relaxationszeit weit unter 3 ms liegt. Hier zeigt sich, dass sich f{\"u}r unterschiedliche Partikelsysteme teils sehr charakteristische Signalmuster ergeben. Diese lassen sich grob in drei Kategorien einteilen. Die erste Kategorie sind suspendierte Eindom{\"a}nenpartikel mit einer nicht vernachl{\"a}ssigbaren Relaxationszeit. Hier handelt es sich um das bevorzugte Zielsystem f{\"u}r RDS, das durch die Langevin-Gleichung beschrieben werden kann. Die zweite Kategorie sind Partikelsysteme, bei denen die Relaxationsdauer vernachl{\"a}ssigbar ist. In diesem Fall kann der Signalverlauf mit der Langevinfunktion beschrieben werden. Die dritte Kategorie umfasst alle {\"u}brigen Partikelsysteme, insbesondere Suspensionen von MNP-Clustern, die u.a. aufgrund von Interpartikelwechselwirkung komplexe Signalverl{\"a}ufe ergeben, die sich praktisch nicht berechnen lassen. Spektroskopische Untersuchungen sind damit dennoch durch das Anlegen entsprechender Referenzdatenbanken m{\"o}glich (Fingerprinting). Multiparametrisches RDS, d.h. die Wiederholung der Messung f{\"u}r z.B. unterschiedliche Amplituden oder unterschiedliche Viskosit{\"a}ten des Suspensionsmediums, erzeugt aufgrund mehrerer nichtlinearer Abh{\"a}ngigkeiten massive Unterschiede im resultierenden multidimensionalen Datensatz. Das verspricht die Erreichbarkeit hoher spektroskopischer Trennsch{\"a}rfen bei geeigneter Partikel- und Sequenzoptimierung. Die Simulationen und experimentellen Ergebnisse dieser Arbeit zeigen grunds{\"a}tzliche H{\"u}rden und M{\"o}glichkeiten f{\"u}r das ebenfalls in dieser Arbeit eingef{\"u}hrte RDS auf. Es zeigt damit grundlegende Aspekte auf, die f{\"u}r die Entwicklung von RDS-Hardware und die Optimierung von MNP-Suspensionen n{\"o}tig sind. Mit RDS wird in weiterf{\"u}hrenden Arbeiten die Entwicklung von hochempfindlichen Bioassays und die Erweiterung um die r{\"a}umliche Kodierung angestrebt (RDI), da der zugrunde liegende Effekt zugleich sehr vielversprechend als Grundlage f{\"u}r molekulare Bildgebung ist.}, subject = {Magnetteilchen}, language = {de} } @phdthesis{Bauernfeind2023, author = {Bauernfeind, Maximilian Josef Xaver}, title = {Epitaxy and Spectroscopy of Two-Dimensional Adatom Systems: the Elemental Topological Insulator Indenene on SiC}, doi = {10.25972/OPUS-31166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Two-dimensional (2D) topological insulators are a new class of materials with properties that are promising for potential future applications in quantum computers. For example, stanene represents a possible candidate for a topological insulator made of Sn atoms arranged in a hexagonal lattice. However, it has a relatively fragile low-energy spectrum and sensitive topology. Therefore, to experimentally realize stanene in the topologically non-trivial phase, a suitable substrate that accommodates stanene without compromising these topological properties must be found. A heterostructure consisting of a SiC substrate with a buffer layer of adsorbed group-III elements constitutes a possible solution for this problem. In this work, 2D adatom systems of Al and In were grown epitaxially on SiC(0001) and then investigated structurally and spectroscopically by scanning tunneling microscopy (STM) and photoelectron spectroscopy. Al films in the high coverage regime \( (\Theta_{ML}\approx2\) ML\( ) \) exhibit unusually large, triangular- and rectangular-shaped surface unit cells. Here, the low-energy electron diffraction (LEED) pattern is brought into accordance with the surface topography derived from STM. Another Al reconstruction, the quasi-one-dimensional (1D) Al phase, exhibits a striped surface corrugation, which could be the result of the strain imprinted by the overlayer-substrate lattice mismatch. It is suggested that Al atoms in different surface areas can occupy hexagonal close-packed and face-centered cubic lattice sites, respectively, which in turn lead to close-packed transition regions forming the stripe-like corrugations. On the basis of the well-known herringbone reconstruction from Au(111), a first structural model is proposed, which fits well to the structural data from STM. Ultimately, however, thermal treatments of the sample could not generate lower coverage phases, i.e. in particular, a buffer layer structure. Strong metallic signatures are found for In high coverage films \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) by scanning tunneling spectroscopy (STS) and angle-resolved photoelectron spectroscopy (ARPES), which form a \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \) surface reconstruction. In all these In phases electrons follow the nearly-free electron model. Similar to the Al films, thermal treatments could not obtain the buffer layer system. Surprisingly, in the course of this investigation a triangular In lattice featuring a \( (1\times1) \) periodicity is observed to host massive Dirac-like bands at \( K/K^{\prime} \) in ARPES. Based on this strong electronic similarity with graphene at the Brillouin zone boundary, this new structure is referred to as \textit{indenene}. An extensive theoretical analysis uncovers the emergence of an electronic honeycomb network based on triangularly arranged In \textit{p} orbitals. Due to strong atomic spin-orbit coupling and a comparably small substrate-induced in-plane inversion symmetry breaking this material system is rendered topologically non-trivial. In indenene, the topology is intimately linked to a bulk observable, i.e., the energy-dependent charge accumulation sequence within the surface unit cell, which is experimentally exploited in STS to confirm the non-trivial topological character. The band gap at \( K/K^{\prime} \), a signature of massive Dirac fermions, is estimated by ARPES to approximately 125 meV. Further investigations by X-ray standing wave, STM, and LEED confirm the structural properties of indenene. Thus, this thesis presents the growth and characterization of the novel quantum spin Hall insulator material indenene.}, subject = {Dreiecksgitter}, language = {en} } @phdthesis{Tcakaev2023, author = {Tcakaev, Abdul-Vakhab}, title = {Soft X-ray Spectroscopic Study of Electronic and Magnetic Properties of Magnetic Topological Insulators}, doi = {10.25972/OPUS-30378}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303786}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {After the discovery of three-dimensional topological insulators (TIs), such as tetradymite chalcogenides Bi\$_2\$Se\$_3\$, Bi\$_2\$Te\$_3\$ and Sb\$_2\$Te\$_3\$ - a new class of quantum materials characterized by their unique surface electronic properties - the solid state community got focused on topological states that are driven by strong electronic correlations and magnetism. An important material class is the magnetic TI (MTI) exhibiting the quantum anomalous Hall (QAH) effect, i.e. a dissipationless quantized edge-state transport in the absence of external magnetic field, originating from the interplay between ferromagnetism and a topologically non-trivial band structure. The unprecedented opportunities offered by these new exotic materials open a new avenue for the development of low-dissipation electronics, spintronics, and quantum computation. However, the major concern with QAH effect is its extremely low onset temperature, limiting its practical application. To resolve this problem, a comprehensive understanding of the microscopic origin of the underlying ferromagnetism is necessary. V- and Cr-doped (Bi,Sb)\$_2\$Te\$_3\$ are the two prototypical systems that have been widely studied as realizations of the QAH state. Finding microscopic differences between the strongly correlated V and Cr impurities would help finding a relevant model of ferromagnetic coupling and eventually provide better control of the QAH effect in these systems. Therefore, this thesis first focuses on the V- and Cr-doped (Bi,Sb)\$_2\$Te\$_3\$ systems, to better understand these differences. Exploiting the unique capabilities of x-ray absorption spectroscopy and magnetic circular dichroism (XAS/XMCD), combined with advanced modeling based on multiplet ligand-field theory (MLFT), we provide a detailed microscopic insight into the local electronic and magnetic properties of these systems and determine microscopic parameters crucial for the comparison with theoretical models, which include the \$d\$-shell filling, spin and orbital magnetic moments. We find a strongly covalent ground state, dominated by the superposition of one and two Te-ligand-hole configurations, with a negligible contribution from a purely ionic 3+ configuration. Our findings indicate the importance of the Te \$5p\$ states for the ferromagnetism in (Bi, Sb)\$_2\$Te\$_3\$ and favor magnetic coupling mechanisms involving \$pd\$-exchange. Using state-of-the-art density functional theory (DFT) calculations in combination with XMCD and resonant photoelectron spectroscopy (resPES), we reveal the important role of the \$3d\$ impurity states in mediating magnetic exchange coupling. Our calculations illustrate that the kind and strength of the exchange coupling varies with the impurity \$3d\$-shell occupation. We find a weakening of ferromagnetic properties upon the increase of doping concentration, as well as with the substitution of Bi at the Sb site. Finally, we qualitatively describe the origin of the induced magnetic moments at the Te and Sb sites in the host lattice and discuss their role in mediating a robust ferromagnetism based on a \$pd\$-exchange interaction scenario. Our findings reveal important clues to designing higher \$T_{\text{C}}\$ MTIs. Rare-earth ions typically exhibit larger magnetic moments than transition-metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of TIs, which is favorable for the realization of the high-temperature QAH effect. Therefore, we have further focused on Eu-doped Bi\$_2\$Te\$_3\$ and scrutinized whether the conditions for formation of a substantial gap in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the \$M_{4,5}\$ x-ray absorption and magnetic circular dichroism spectra reveals a Eu\$^{2+}\$ valence, unlike most other rare earth elements, and confirms a large magnetic moment. At temperatures below 10 K, bulk magnetometry indicates the onset of antiferromagnetic ordering. This is in good agreement with DFT results, which predict AFM interactions between the Eu impurities due to the direct overlap of the impurity wave functions. Our results support the notion of antiferromagnetism coexisting with topological surface states in rare-earth doped Bi\$_2\$Te\$_3\$ and corroborate the potential of such doping to result in an antiferromagnetic TI with exotic quantum properties. The doping with impurities introduces disorder detrimental for the QAH effect, which may be avoided in stoichiometric, well-ordered magnetic compounds. In the last part of the thesis we have investigated the recently discovered intrinsic magnetic TI (IMTI) MnBi\$_6\$Te\$_{10}\$, where we have uncovered robust ferromagnetism with \$T_{\text{C}} \approx 12\$ K and connected its origin to the Mn/Bi intermixing. Our measurements reveal a magnetically intact surface with a large moment, and with FM properties similar to the bulk, which makes MnBi\$_6\$Te\$_{10}\$ a promising candidate for the QAH effect at elevated temperatures. Moreover, using an advanced ab initio MLFT approach we have determined the ground-state properties of Mn and revealed a predominant contribution of the \$d^5\$ configuration to the ground state, resulting in a \$d\$-shell electron occupation \$n_d = 5.31\$ and a large magnetic moment, in excellent agreement with our DFT calculations and the bulk magnetometry data. Our results together with first principle calculations based on the DFT-GGA\$+U\$, performed by our collaborators, suggest that carefully engineered intermixing plays a crucial role in achieving a robust long-range FM order and therefore could be the key for achieving enhanced QAH effect properties. We expect our findings to aid better understanding of MTIs, which is essential to help increasing the temperature of the QAH effect, thus facilitating the realization of low-power electronics in the future.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Stahlhut2023, author = {Stahlhut, Philipp}, title = {Konzeption und Aufbau einer Nanofokus Labor CT Anlage in Reflexionsgeometrie auf Basis eines Rasterelektronenmikroskops}, doi = {10.25972/OPUS-30264}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302648}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In der vorliegenden Arbeit werden die Konzeption und Realisierung eines Computertomographen zur Materialanalyse auf Basis eines Rasterelektronenmikroskops mit einem r{\"a}umlichen Aufl{\"o}sungsverm{\"o}gen im Nanometerbereich diskutiert. Durch einen fokussierten Elektronenstrahl, der mit einer Beschleunigungsspannung von 30 kV auf eine mikrostrukturierte Wolframnadel mit einem Spitzenradius von bis zu 50 nm gezielt wird, entsteht ein kleiner R{\"o}ntgenbrennfleck {\"u}ber den mit geometrischer Vergr{\"o}ßerung hochaufl{\"o}sende Projektionen eines zu untersuchenden Objekts erzeugt werden. Durch Rotation des Testobjekts werden Projektionen aus verschiedenen Blickwinkeln aufgenommen und {\"u}ber einen speziellen Rekonstruktionsalgorithmus zu einem 3-dimensionalen Bild zusammengef{\"u}gt. Bei der Beurteilung der Einzelkomponenten des Ger{\"a}ts wird insbesondere auf Struktur, Form und den elektrochemischen Herstellungsprozess der R{\"o}ntgenquelle eingegangen. Eine ausreichend genaue Positionierung von Messobjekt und R{\"o}ntgenbrennfleck wird {\"u}ber Piezoachsen realisiert, w{\"a}hrend die Stabilit{\"a}t des R{\"o}ntgenbrennflecks {\"u}ber die Elektronenoptik des Rasterelektronenmikroskops und die Form der Quellnadel optimiert wird. Das r{\"a}umliche Aufl{\"o}sungsverm{\"o}gen wird {\"u}ber die Linienspreizfunktion an Materialkanten abgesch{\"a}tzt. F{\"u}r eine Wolfram-Block-Quelle ergibt sich dabei ein Aufl{\"o}sungsverm{\"o}gen von 325 nm - 400 nm in 3D, w{\"a}hrend der Quellfleck einer Wolframnadel das Aufl{\"o}sungsverm{\"o}gen der Anlage auf 65 nm - 90 nm in 2D und 170 nm - 300 nm in 3D bei Messungen an einem AlCu29-Testobjekt anhebt. Außerdem werden die Auswirkungen der Phasenkontrastcharakteristik der R{\"o}ntgenquelle auf die rekonstruierten Bilder nach Anwendung eines Paganin-Filters diskutiert. Dabei zeigt sich, dass durch Anwendung des Filters ein verbessertes Signal-zu-Rausch-Verh{\"a}ltnis auf Kosten der r{\"a}umlichen Bildaufl{\"o}sung erzielt werden kann. Eine Vergleichsmessung mit einem kommerziell verf{\"u}gbaren R{\"o}ntgenmikroskop zeigt die St{\"a}rken des vorgestellten Systems bei Untersuchung von stark absorbierenden Messobjekten. Das kompakte Design erlaubt eine Weiterentwicklung in Richtung eines nanoCT-Moduls als Upgrade Option f{\"u}r Rasterelektronenmikroskope im Gegensatz zu den weitaus teureren bisher verbreiteten nanoCT-Ger{\"a}ten.}, subject = {Computertomographie}, language = {de} } @phdthesis{Jung2023, author = {Jung, Johannes}, title = {Wechselwirkungen zwischen Kantenzust{\"a}nden auf dem topologisch kristallinen Isolator Pb\(_{1-x}\)Sn\(_x\)Se}, doi = {10.25972/OPUS-29861}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Einerseits besteht die einfachste M{\"o}glichkeit zum Ladungs- und Informationstransport zwischen zwei Punkten in deren direkter Verbindung durch eindimensionale Kan{\"a}le. Andererseits besitzen topologische Materialien exotische und {\"a}ußerst vorteilhafte Eigenschaften, weshalb es nahe liegt, dass schon bald neue Anwendungen aus ihnen realisiert werden. Wenn diese beiden Entwicklungen zusammenkommen, dann ist ein grundlegendes Verst{\"a}ndnis von Quanteninterferenz oder Hybridisierungseffekten in eindimensionalen, topologischen Kan{\"a}len von fundamentaler Wichtigkeit. Deshalb werden in der vorliegenden Arbeit Wechselwirkungen von eindimensionalen, topologisch gesch{\"u}tzten Kantenzust{\"a}nden, die an ungeradzahligen Stufenkanten auf der (001)-Oberfl{\"a}che von Pb1-xSnxSe auftreten, untersucht. Aufgrund der lateralen Lokalisierung auf wenige Nanometer um eine Stufenkante herum und der Notwendigkeit zwischen gerad- und ungeradzahligen Stufenkantenh{\"o}hen zu unterscheiden, bieten sich die Rastertunnelmikroskopie und -spektroskopie als Methoden an. Die neu entdeckten Kopplungs- bzw. Wechselwirkungseffekte zwischen benachbarten Kantenzust{\"a}nden treten auf, sobald der Stufe zu Stufe Abstand einen kritischen Wert von dkri ≈ 25nm unterschreitet. Dieses Kriterium kann durch verschiedene r{\"a}umliche Anordnungen von Stufenkanten erf{\"u}llt werden. Infolgedessen werden sich kreuzende, parallel verlaufende und zusammenlaufende Stufenkanten genauer untersucht. Bei letzteren ver{\"a}ndert sich entlang der Struktur kontinuierlich der Abstand und damit die Kopplungsst{\"a}rke zwischen den beiden Randkan{\"a}len. Infolgedessen wurden drei Koppelungsregime identifiziert. (I) Ausgehend von einer schwachen Wechselwirkung zeigt der f{\"u}r die Kantenzust{\"a}nde charakteristische Peak im Spektrum zun{\"a}chst eine Verbreiterung und Verminderung der Intensit{\"a}t. (II) Mit weiter zunehmender Wechselwirkung beginnt sich der Zustand in zwei Peaks aufzuspalten, sodass ab dkri ≈ 15nm an beiden Stufenkanten durchgehen eine Doppelpeak zu beobachten ist . Mit weiter abnehmendem Abstand erreicht die Aufspaltung Werte von einigen 10 meV, w{\"a}hrend sich die Intensit{\"a}t weiter reduziert. (III) Sobald zwei Stufenkanten weniger als etwa 5nm voneinander getrennt sind, konvergieren aufgrund der schwindenden Intensit{\"a}t und des sinkenden energetischen Abstands der beiden Peaks zu den van Hove Singularit{\"a}ten die Spektren an den Stufenkanten gegen das Spektrum {\"u}ber einer Terrasse. i Die Aufspaltung verl{\"a}uft in den Bereichen I und II asymmetrisch, d. h. ein Peak verbleibt ungef{\"a}hr bei der Ausgangsenergie, w{\"a}hrend der andere mit zunehmender Kopplung immer weiter weg schiebt. Bez{\"u}glich der Asymmetrie kann kein Unterschied festgestellt werden, ob die zusammenlaufenden Stufenkanten eine Insel oder Fehlstelleninsel bilden oder ob die Stufenkanten sogar g{\"a}nzlich parallel verlaufen. Es zeigt sich keine Pr{\"a}ferenz, ob zun{\"a}chst der niederenergetische oder der hochenergetische Peak schiebt. Erst im Regime starker Kopplung (III) kann beobachtet werden, dass beide Peaks die Ausgangsenergie deutlich verlassen. Im Gegensatz dazu kann bei sich kreuzenden Stufen ein erheblicher Einfluss der Geometrie, in Form des eingeschlossenen Winkels, auf das Spektrum beobachtet werden. Unabh{\"a}ngig vom Winkel existiert am Kreuzungspunkt selbst kein Kantenzustand mehr. Die Zust{\"a}nde an den vier Stufen beginnen, abh{\"a}ngig vom Winkel, etwa 10-15nm vor dem Kreuzungspunkt abzuklingen. {\"U}berraschenderweise zeigt sich dabei, dass im Fall rechtwinkliger Stufen gar keine Aufspaltung zu beobachten ist, w{\"a}hrend bei allen anderen Winkeln ein Doppelpeak festgestellt werden kann. Diese Entdeckung deutet auf Orthogonalit{\"a}t bez{\"u}glich einer Quantenzahl bei den beteiligten Kantenzust{\"a}nde hin. Neben einer nur theoretisch vorhergesagten Spinpolarisation kann dieser Effekt auch von dem orbitalem Charakter der beteiligten Dirac-Kegel verursacht sein. Da der topologische Schutz in Pb1-xSnxSe durch Kristallsymmetrien garantiert ist, wird als letzter intrinsischer Effekt der Einfluss von eindimensionalen Defekten auf die Kantenzust{\"a}nde untersucht. Ber{\"u}cksichtigt werden dabei ein nicht n{\"a}her klassifizierbarer, oberfl{\"a}chennaher Defekt und Schraubversetzungen. In beiden F{\"a}llen kann ebenfalls eine Aufspaltung des Kantenzustands in einen Doppelpeak gezeigt werden. Im zweiten Teil dieser Arbeit werden die Grundlagen f{\"u}r eine Wiederverwendung von (Pb,Sn)Se-Oberfl{\"a}chen bei zuk{\"u}nftige Experimenten mit (magnetischen) Adatomen geschaffen. Durch Kombination von Inoenzerst{\"a}ubung und Tempern wird dabei nicht nur eine gereinigte Oberfl{\"a}che erzeugt, sondern es kann auch das Ferminiveau gezielt erh{\"o}ht oder gesenkt werden. Dieser Effekt beruht auf eine Modifikation der Sn- Konzentration und der von ihr kontrollierten Anzahl an Defektelektronen. Als letztes sind erste Messungen an Cu- und Fe-dotierte Proben gezeigt. Durch die Adatome tritt eine n-Dotierung auf, welche den Dirac-Punkt des Systems in Richtung des Ferminiveaus verschiebt. Sobald er dieses erreicht hat kommt es zu Wechselwirkungsph{\"a}nomenen an freistehenden Stufenkanten. Dies f{\"u}hrt zu einer Doppelpeakstruktur mit einer feinen Aufspaltung von wenigen meV. Das Ph{\"a}nomen ist auf ein schmales Energiefenster beschr{\"a}nkt, bei dem die Lage des Dirac-Punkts nur etwa 5 meV (in beide Richtungen) von der des Ferminiveaus abweichen darf.}, subject = {Topologischer Isolator}, language = {de} } @phdthesis{CrespoVidal2023, author = {Crespo Vidal, Can Raphael}, title = {Spectroscopic investigation of the three-dimensional topological insulators (MnBi\(_2\)Te\(_4\))(Bi\(_2\)Te\(_3\))\(_n\) and HgTe: band structure, orbital symmetries, and influence of the cation \(d\)-states}, doi = {10.25972/OPUS-31293}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312931}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis examines the electronic properties of two materials that promise the realization and observation of novel exotic quantum phenomena. For this purpose, angle-resolved photoemission forms the experimental basis for the investigation of the electronic properties. Furthermore, the magnetic order is investigated utilizing X-ray dichroism measurements. First, the bulk and surface electronic structure of epitaxially grown HgTe in its three-dimensional topological insulator phase is investigated. In this study, synchrotron radiation is used to address the three-dimensional band structure and orbital composition of the bulk states by employing photon-energy-dependent and polarization-dependent measurements, respectively. In addition, the topological surface state is examined on in situ grown samples using a laboratory photon source. The resulting data provide a means to experimentally localize the bulk band inversion in momentum space and to evidence the momentum-dependent change in the orbital character of the inverted bulk states. Furthermore, a rather new series of van der Waals compounds, (MnBi\(_2\)Te\(_4\))(Bi\(_2\)Te\(_3\))\(_n\), is investigated. First, the magnetic properties of the first two members of the series, MnBi\(_2\)Te\(_4\) and MnBi\(_4\)Te\(_7\), are studied via X-ray absorption-based techniques. The topological surface state on the two terminations of MnBi\(_4\)Te\(_7\) is analyzed using circular dichroic, photon-energy-dependent, and spin-resolved photoemission. The topological state on the (MnBi\(_2\)Te\(_4\))-layer termination shows a free-standing Dirac cone with its Dirac point located in the bulk band gap. In contrast, on the (Bi\(_2\)Te\(_3\))-layer termination the surface state hybridizes with the bulk valences states, forming a spectral weight gap, and exhibits a Dirac point that is buried within the bulk continuum. Lastly, the lack of unambiguous evidence in the literature showing a temperature-dependent mass gap opening in these magnetic topological insulators is discussed through MnBi\(_2\)Te\(_4\).}, subject = {ARPES}, language = {en} } @phdthesis{Genheimer2023, author = {Genheimer, Ulrich}, title = {The Photophysics of Small Organic Molecules for Novel Light Emitting Devices}, doi = {10.25972/OPUS-32031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320313}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This PhD thesis addresses the photophysics of selected small organic molecules with the purpose of using them for efficient and even novel light sources. In particular, the studies presented focused on revealing the underlying exciton dynamics and determining the transition rates between different molecular states. It was shown how the specific properties and mechanisms of light emission in fluorescent molecules, molecules with phosphorescence or thermally activated delayed fluorescence (TADF), biradicals, and multichromophores can be utilized to build novel light-emitting devices. The main tool employed here was the analysis of the emitters' photon statistics, i.e. the analysis of the temporal distribution of emitted photons, during electrical or optical excitation. In the introduction of this work, the working principle of an organic light-emitting diode (OLED) was introduced, while Chapter 2 provided the physical background of the relevant properties of organic molecules and their interaction with light. In particular, the occurrence of discrete energy levels in organic semiconductors and the process of spontaneous light emission were discussed. Furthermore, in this chapter a mathematical formalism was elaborated with the goal to find out what kind of information about the studied molecule can be obtained by analyzing its photon statistics. It was deduced that the intensity correlation function g (2)(t) contains information about the first two factorial moments of the photon statistics and that higher order factorial moments do not contain any additional information about the system under study if the system is always in the same state after the emission of a photon. To conclude the introductory part, Chapter 3 introduced the utilized characterization methods including confocal microscopy of single molecules, time correlated single photon counting and temperature dependent photoluminescence measurements. To provide the background necessary for an understanding of for the following result chapters, in Section 4.1 a closer look was taken at the phenomenon of blinking and photobleaching of individual molecules. For a squaraine-based fluorescent emitter rapid switching between a bright and dark state was observed during photoexcitation. Using literature transition rates between the molecular states, a consistent model was developed that is able to explain the distribution of the residence times of the molecule in the bright and dark states. In particular, an exponential and a power-law probability distribution was measured for the time the molecule resides in tis bright and dark state, respectively. This behavior as well as the change in photoluminescence intensity between the two states was conclusively explained by diffusion of residual oxygen within the sample, which had been prepared in a nitrogen-filled glovebox. For subsequent samples of this work, thin strips of atomic aluminum were deposited on the matrices to serve as oxygen getter material. This not only suppressed the efficiency of photobleaching, but also noticeably prolonged the time prior to photobleaching, which made many of the following investigations possible in the first place. For emitters used in displays, emission properties such as narrow-band luminescence and short fluorescence lifetimes are desired. These properties can be influenced not only by the emitter molecule itself, but also by the interaction with the chosen environment. Therefore, before focusing on the photophysics of individual small organic molecules, Section 4.2 highlighted the interaction of a perylene bisimide-based molecular species with its local environment in a disordered polymethyl methacrylate matrix. In a statistical approach, individual photophysical properties were measured for 32 single molecules and correlations in the variation of the properties were analyzed. This revealed how the local polarity of the molecules' environment influences their photophysics. In particular, it was shown how an increase in local polarity leads to a red-shifted emission, narrower emission lines, broader vibronic splitting between different emission lines in combination with a smaller Huang-Rhys parameter, and a longer fluorescence lifetime. In the future, these results may help to embed individual chromophores into larger macromolecules to provide the chromophore with the optimal local environment to exhibit the desired emission properties. The next two sections focused on a novel and promising class of chromophores, namely linear coordinated copper complexes, synthesized in the group of Dr. Andreas Steffen at the Institute of Inorganic Chemistry at the University of W{\"u}rzburg. In copper atoms, the d-orbitals are fully occupied, which prevents undesirable metal-centered d-d⋆ states, which tend to lie low in energy and recombine non-radiatively. Simultaneously, the copper atom provides a flexible coordination geometry, while complexes in their linear form are expected to exhibit the least amount of excited state distortions. Depending on the chosen ligands, these copper complexes can exhibit phosphorescence as well as temperature activated delayed fluorescence. In Section 4.3, a phosphorescent copper complex with a chlorine atom and a 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-2-pyrrolidine-ylidene- ligand was tested for its suitability as an optically active material in an OLED. For this purpose, an OLED with a polyspirobifluorene-based copolymer matrix and the dopant at a concentration of 20 wt\% was electrically excited. Deconvolution of the emission spectrum in contributions from the matrix and the dopant revealed that 60 \% of the OLEDs emission was due to the copper complex. It was also shown that the shape of the emission spectrum of the copper complex remains unchanged upon incorporation into the OLED, but is red-shifted by about 233 meV. In Section 4.4, a second copper complex exhibiting thermally activated delayed fluorescence was analyzed. This complex comprised a carbazolate as well as a 2-(2,6- diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-ide ligand and was examined in the solid state and at the single-molecule level, where single photon emission was recorded up to an intensity of 78'000 counts per second. The evaluation of the second-order autocorrelation function of the emitted light proved an efficient transition between singlet and triplet excited states on the picosecond time scale. In the solid state, the temperature- dependent fluorescence decay of the complex was analyzed after pulsed photoexcitation in the temperature range between 300 K and 5 K. From these measurements, a small singlet-triplet energy gap of only 65 meV and a triplet sublevel splitting of 3.0 meV were derived. The transition rates between molecular states could also be determined. Here, the fast singlet decay time of τS1 = 9.8ns proved the efficient thermally activated delayed fluorescence process, which was demonstrated for the first time for this new class of copper(I) complexes thus. While the use of thermally activated delayed fluorescence is a potential way to harness otherwise long-living dark triplet states, radicals completely avoid dark triplet states. However, this usually comes with the huge drawback of the molecules being chemically unstable. Therefore, two chemically stable biradical species were synthesized in the framework of the DFG research training school GRK 2112 on Molecular biradicals: structure, properties and reactivity, by Yohei Hattori in the group of Prof. Dr. Christoph Lambert and Rodger Rausch in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, respectively. In Section 4.5, it was investigated how these molecules can be used in OLEDs. In the first isoindigo based biradical (6,6'-bis(3,5-di-tert-butyl-4-phenoxyl)-1,1'-bis(2- ethylhexyl)-[3,3'-biindolinyl-idene]-2,2'-dione) two tert-butyl moieties kinetically block chemical reactions at the place of the lone electrons and an electron-withdrawing core shifts the electron density into the center of the chromophore. With these properties, it was possible to realize a poly(p-phenylene vinylene) copolymer based OLED doped with the biradical and to observe luminescence during optical as well as electrical excitation. Analyzing shapes of the photo- and electroluminescence spectra at different doping concentrations, F{\"o}rster resonance energy transfer was determined to be the dominant transition mechanism for excitons from the matrix to the biradical dopants. Likewise, OLEDs could be realized with the second diphenylmethylpyridine based birad- ical (4-(5-(bis(2,4,6-trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)-N-(4-(5-(bis(2,4,6- -trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)phenyl)-N-(4-methoxyphenyl)aniline) as dopant. In this biradical, chlorinated diphenylmethyl groups protect the two unpaired electrons. Photo- and electroluminescence spectra showed an emission in the near in- frared spectral range between 750 nm and 1000 nm. Also, F{\"o}rster resonance energy trans- fer was the dominant energy transfer mechanism with an transfer efficiency close to 100 \% even at doping concentrations of only 5 wt\%. In addition to demonstrating the working OLEDs based in biradicals, the detection of luminescence of the two biradical species in devices also constitutes an important step toward making use of experimental techniques such as optically detected electron spin resonance, which could provide information about the electronic states of the emitter and their spin manifold during OLED operation. Another class of emitters studied are molecules in which several chromophores are co- valently linked to form a macrocyclic system. The properties of these multichromophores were highlighted in Section 4.6. Here, it was analyzed how the photophysical behavior of the molecules is affected by the covalent linking, which determines the interaction be- tween the chromophores. The first multichromophore, 2,2'-ditetracene, was synthesized by Lena Ross in the group of Prof. Dr. Anke Kr{\"u}ger at the Institute of Organic Chemistry at the University of W{\"u}rzburg and was analyzed in this work both at the single-molecule level and in its aggregated crystalline form. While the single crystals were purified and grown in a vertical sublimation oven, the samples for the single molecule studies were prepared in matrices of amorphous polymethyl methacrylate and crystalline anthracene. Tetracene was analyzed concurrently to evaluate the effects of covalent linking. In samples where the distance between two molecules is sufficiently large, tetracene and 2,2'-ditracene show matching emission profiles with the only difference in the Franck-Condon factors and a de- creased photoluminescence decay time constant from 14 ns for tetracene to 5 ns for 2,2'- ditracene, which can be attributed to the increased density of the vibrational modes in 2,2'-ditracene. Evaluation of the photon statistics of individual 2,2'-ditracene molecules however showed that the system does not behave as two individual chromophores but as a collective state, preserving the spectral properties of the two tetracene chromophores. Complementary calculations performed by Marian Deutsch in the group of Prof. Dr. Bernd Engels at the Institute of Physical and Theoretical Chemistry at the University of W{\"u}rzburg helped to understand the processes in the materials and could show that the electronic and vibronic modes of 2,2'-ditracene are superpositions of the modes occurring in tetracene. In contrast, single-crystalline 2,2'-ditetracene behaves significantly different than tetracene, namely exhibiting a red shift in photoluminescence of 150 meV, caused by an altered crys- talline packing that lowers the S1-state energy level. Temperature-dependent photolu- minescence measurements revealed a rich emission pattern from 2,2'-ditetracene single crystals. The mechanisms behind this were unraveled using photoluminescence lifetime density analysis in different spectral regions of the emission spectrum and at different tem- peratures. An excimer state was identified that is located about 5 meV below the S1-state, separated by a 1 meV barrier, and which can decay to the ground state with a time constant of 9 ns. Also, as the S1-state energy level is lowered below the E(S1) ≥ 2 ×E(T1) threshold, singlet fission is suppressed in 2,2'-ditetracene in contrast to tetracene. Therefore, at low temperatures, photoluminescence is enhanced by a factor of 46, which could make 2,2'- ditetracene a useful material for future applications in devices such as OLEDs or lasers. The second multichromophore species, para-xylylene bridged perylene bisimide macrocycles, were synthesized by Peter Spenst in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, by linking three and four perylene bisimides, respectively. To reveal the exciton dynamics in these macrocycles, highly diluted monomers as well as trimers and tetramers were doped into matrices of polymethyl methacrylate to create thin films in which individual macrocycles could be analyzed. The emission spectra of the macrocycles remained identical to those of the monomers, indicating weak coupling between the chromophores. Single photon emission could be verified for monomers as well as macrocycles, as exciton-exciton annihilation processes suppress the simultaneous emission of two photons from one macrocycle. Nevertheless, the proof of the occurrence of a doubly excited state was obtained by excitation power dependent photon statistics measurements. The formalism developed in the theory part of this thesis for calculating the photon statistics of multichromophore systems was used here to find a theoretical model that matches the experimental results. The main features of this model are a doubly excited state, fast singlet-singlet annihilation, and an efficient transition from the doubly excited state to a dark triplet state. The occurrence of triplet-triplet annihilation was demonstrated in a subsequent experiment in which the macrocycles were excited at a laser intensity well above the saturation intensity of the monomer species. In contrast to the monomers, the trimers and tetramers exhibited neither a complete dark state nor saturation of photoluminescence. Both processes, efficient singlet-singlet and triplet-triplet annihilation make perylene bisimide macrocycles exceptionally bright single photon emitters. These advantages were utilized to realize a room temperature electrically driven fluorescent single photon source. For this purpose, OLEDs were fabricated using polyvinylcarbazole and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol blends as a host material for perylene bisimide trimers. Photon antibunching could be observed in both optically and electrically driven devices, representing the first demonstration of electrically driven single photon sources using fluorescent emitters at room temperature. As expected from the previous optical experiments, the electroluminescence of the molecules was exceptionally bright, emitting about 105 photons per second, which could be seen even by eye under the microscope. Finally, in the last section 4.7 of this thesis, two additional measurement schemes were proposed as an alternative to the measurement of the second-order correlation function g (2)(t) of single molecules, which only provides information about the first two factorial moments of the molecules' photon statistics. In the first scheme, the g (3)(t) function was measured with three photodiodes, which is a consequential extension of the Hanbury Brown and Twiss measurement with two photodiodes. It was demonstrated how measuring the g (3)(t) function is able to identify interfering emitters with non-Poisson statistics in the experiment. The second setup was designed with an electro-optic modulator that repeatedly gen- erates photoexcitation in the form of a step function. The recording of luminescence transients for different excitation intensities yields the same results as the correspond- ing g (2)-functions measured on single emitters, both in their shape and in their depen- dence on excitation power. To demonstrate this concept, the TADF emitter TXO-TPA (2- [4-(diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) was doped at a concen- tration of 10-4 wt\% in a mCP (1,3-Bis(N-carbazolyl)benzene) matrix. This concentration was low enough that TXO-TPA molecules did not interact with each other, but an ensem- ble of molecules was still present in the detection volume. The intramolecular transition rates between singlet and triplet states of TXO-TPA could be derived with an error of at most 5 \%. Other experimental techniques designed to obtain this information require ei- ther lengthy measurements on single molecules, where sample preparation is also often a challenge, or temperature-dependent fluorescence lifetime measurements, which require a cryostat, which in turn places constraints on the sample design used. In future, this ap- proach could establish a powerful method to study external factors influencing molecular transition rates. Overall, this thesis has introduced new molecular materials, revealed their photophys- ical properties, and demonstrated how they can be used to fabricate efficient and even novel light sources.}, subject = {Fotophysik}, language = {en} } @phdthesis{Fischer2023, author = {Fischer, Mathias}, title = {Transient Phenomena and Ionic Kinetics in Hybrid Metal Halide Perovskite Solar Cells}, doi = {10.25972/OPUS-32220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322204}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The fact that photovoltaics is a key technology for climate-neutral energy production can be taken as a given. The question to what extent perovskite will be used for photovoltaic technologies has not yet been fully answered. From a photophysical point of view, however, it has the potential to make a useful contribution to the energy sector. However, it remains to be seen whether perovskite-based modules will be able to compete with established technologies in terms of durability and cost efficiency. The additional aspect of ionic migration poses an additional challenge. In the present work, primarily the interaction between ionic redistribution, capacitive properties and recombination dynamics was investigated. This was done using impedance spectroscopy, OCVD and IV characteristics as well as extensive numerical drift-diffusion simulations. The combination of experimental and numerical methods proved to be very fruitful. A suitable model for the description of solar cells with respect to mobile ions was introduced in chapter 4.4. The formal mathematical description of the model was transferred by a non-dimensionalization and suitable numerically solvable form. The implementation took place in the Julia language. By intelligent use of structural properties of the sparse systems of equations, automatic differentiation and the use of efficient integration methods, the simulation tool is not only remarkably fast in finding the solution, but also scales quasi-linearly with the grid resolution. The software package was released under an open source license. In conventional semiconductor diodes, capacitance measurements are often used to determine the space charge density. In the first experimental chapter 5, it is shown that although this is also possible for the ionic migration present in perovskites, it cannot be directly understood as doping related, since the space charge distribution strongly depends on the preconditions and can be manipulated by an externally applied voltage. The exact form of this behavior depends on the perovskite composition. This shows, among other things, that experimental results can only be interpreted within the framework of conventional semiconductors to a very limited extent. Nevertheless, the built-in 99 potential of the solar cell can be determined if the experiments are carried out properly. A statement concerning the type and charge of the mobile ions is not possible without further effort, while their number can be determined. The simulations were applied to experimental data in chapter 6. Thus, it could be shown that mobile ions make a significant contribution to the OCVD of perovskite solar cells. j-V characteristics and OCVD transients measured as a function of temperature and illumination intensities could be quantitatively modeled simultaneously using a single global set of parameters. By the simulations it was further possible to derive a simple experimental procedure to determine the concentration and the diffusivity of the mobile ions. The possibility of describing different experiments in a uniform temperaturedependent manner strongly supports the model of mobile ions in perovskites. In summary, this work has made an important contribution to the elucidation of ionic contributions to the (photo)electrical properties of perovskite solar cells. Established experimental techniques for conventional semiconductors have been reinterpreted with respect to ionic mass transport and new methods have been proposed to draw conclusions on the properties for ionic transport. As a result, the published simulation tools can be used for a number of further studies.}, subject = {Simulation}, language = {en} } @phdthesis{Friedrich2023, author = {Friedrich, Felix}, title = {Magnetic Excitations in Single and Coupled Atoms on Surfaces: From the Kondo Effect to Yu-Shiba-Rusinov States}, doi = {10.25972/OPUS-32069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320699}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Magnetic systems underlie the physics of quantum mechanics when reaching the limit of few or even single atoms. This behavior limits the minimum size of magnetic bits in data storage devices as spontaneous switching of the magnetization leads to the loss of information. On the other hand, exactly these quantum mechanic properties allow to use such systems in quantum computers. Proposals to realize qubits involve the spin states of single atoms as well as topologically protected Majorana zero modes, that emerge in coupled systems of magnetic atoms in proximity to a superconductor. In order to implement and control the proposed applications, a detailed understanding of atomic spins and their interaction with the environment is required. In this thesis, two different systems of magnetic adatoms coupled to metallic and superconducting surfaces are studied by means of scanning tunneling microscopy (STM) and spectroscopy: Co atoms on the clean Cu(111) were among the first systems exhibiting signatures of the Kondo effect in an individual atom. Yet, a recent theoretical work proposed an alternative interpretation of these early experimental results, involving a newly described many-body state. Spin-averaged and -polarized experiments in high magnetic fields presented in this thesis confirm effects beyond the Kondo effect that determine the physics in these Co atoms and suggest a potentially even richer phenomenology than proposed by theory. The second studied system are single and coupled Fe atoms on the superconducting Nb(110) surface. Magnetic impurities on superconducting surfaces locally induce Yu-Shiba-Rusinov (YSR) states inside the superconducting gap due to their pair breaking potential. Coupled systems of such impurities exhibit YSR bands and, if the bands cross the Fermi level such that the band structure is inverted, host Majorana zero modes. Using the example of Fe atoms on Nb(110), the YSR states' dependence on the adatom-substrate interaction as well as the interatomic YSR state coupling is investigated. In the presence of oxygen on the Nb surface, the adatom-substrate interaction is shown to be heavily modified and the YSR states are found to undergo a quantum phase transition, which can be directly linked to a modified Kondo screening. STM tips functionalized with CO molecules allow to resolve self-assembled one-dimensional chains of Fe atoms on the clean Nb(110) surface to study the YSR states' coupling. Mapping out the states' wave functions reveals their symmetry, which is shown to alter as a function of the states' energy and number of atoms in the chain. These experimental results are reproduced in a simple tight-binding model, demonstrating a straightforward possibility to describe also more complex YSR systems toward engineered, potentially topologically non-trivial states.}, subject = {Rastertunnelmikroskopie}, language = {en} } @phdthesis{Gram2023, author = {Gram, Maximilian}, title = {Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich}, doi = {10.25972/OPUS-32255}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zus{\"a}tzlich die M{\"o}glichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und k{\"o}nnen grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einf{\"u}hrung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz f{\"u}r die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem pr{\"a}klinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking {\"u}bertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Stuehler2023, author = {St{\"u}hler, Rudolf Raul Albert}, title = {Growth and Spectroscopy of the Two-dimensional Topological Insulator Bismuthene on SiC(0001)}, doi = {10.25972/OPUS-32008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320084}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {A plethora of novel material concepts are currently being investigated in the condensed matter research community. Some of them hold promise to shape our everyday world in a way that silicon-based semiconductor materials and the related development of semiconductor devices have done in the past. In this regard, the last decades have witnessed an explosion of studies concerned with so called ''quantum materials'' with emerging novel functionalities. These could eventually lead to new generations of electronic and/or spintronic devices. One particular material class, the so called topological materials, play a central role. As far as their technological applicability is concerned, however, they are still facing outstanding challenges to date. Predicted for the first time in 2005 and experimentally verified in 2007, two-dimensional topological insulators (2D TIs) (a.k.a. quantum spin Hall insulators) exhibit the outstanding property of hosting spin-polarized metallic states along the boundaries of the insulating 2D bulk material, which are protected from elastic single-particle backscattering and give rise to the quantum spin Hall effect (QSHE). Owing to these peculiar properties the QSHE holds promise for dissipationless charge and/or spin transport. However, also in today's best 2D TIs the observation of the QSHE is still limited to cryogenic temperatures of maximum 100 K. Here, the discovery of bismuthene on SiC(0001) has marked a milestone towards a possible realization of the QSHE at or beyond room-temperature owing to the massively increased electronic bulk energy gap on the order of 1 eV. This thesis is devoted to and motivated by the goal of advancing its synthesis and to build a deeper understanding of its one-particle and two-particle electronic properties that goes beyond prior work. Regarding the aspect of material synthesis, an improved growth procedure for bismuthene is elaborated that increases the domain size of the material considerably (by a factor of ≈ 3.2 - 6.5 compared to prior work). The improved film quality is an important step towards any future device application of bismuthene, but also facilitates all further basic studies of this material. Moreover, the deposition of magnetic transition metals (Mn and Co) on bismuthene is investigated. Thereby, the formation of ordered magnetic Bi-Mn/Co alloys is realized, their structure is resolved with scanning tunneling microscopy (STM), and their pristine electronic properties are resolved with scanning tunneling spectroscopy (STS) and photoemission spectroscopy (PES). It is proposed that these ordered magnetic Bi-Mn/Co-alloys offer the potential to study the interplay between magnetism and topology in bismuthene in the future. In this thesis, a wide variety of spectroscopic techniques are employed that aim to build an understanding of the single-particle, as well as two-particle level of description of bismuthene's electronic structure. The techniques involve STS and angle-resolved PES (ARPES) on the one hand, but also optical spectroscopy and time-resolved ARPES (trARPES), on the other hand. Moreover, these experiments are accompanied by advanced numerical modelling in form of GW and Bethe-Salpeter equation calculations provided by our theoretical colleagues. Notably, by merging many experimental and theoretical techniques, this work sets a benchmark for electronic structure investigations of 2D materials in general. Based on the STS studies, electronic quasi-particle interferences in quasi-1D line defects in bismuthene that are reminiscent of Fabry-P{\´e}rot states are discovered. It is shown that they point to a hybridization of two pairs of helical boundary modes across the line defect, which is accompanied by a (partial) lifting of their topological protection against elastic single-particle backscattering. Optical spectroscopy is used to reveal bismuthene's two-particle elecronic structure. Despite its monolayer thickness, a strong optical (two-particle) response due to enhanced electron-hole Coulomb interactions is observed. The presented combined experimental and theoretical approach (including GW and Bethe-Salpeter equation calculations) allows to conclude that two prominent optical transitions can be associated with excitonic transitions derived from the Rashba-split valence bands of bismuthene. On a broader scope this discovery might promote further experiments to elucidate links of excitonic and topological physics. Finally, the excited conduction band states of bismuthene are mapped in energy and momentum space employing trARPES on bismuthene for the first time. The direct and indirect band gaps are succesfully extracted and the effect of excited charge carrier induced gap-renormalization is observed. In addition, an exceptionally fast excited charge carrier relaxation is identified which is explained by the presence of a quasi-metallic density of states from coupled topological boundary states of domain boundaries.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Lutter2023, author = {Lutter, Fabian}, title = {Elementsensitive Bildgebung - Einsatz chromatischer Pixelarrays in R{\"o}ntgen nano-CT}, doi = {10.25972/OPUS-31995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Diese Arbeit befasst sich mit der Weiterentwicklung und Charakterisierung des XRM-II nanoCT Systems, sowie dessen M{\"o}glichkeiten zur Materialtrennung und Elementbestimmung in der nano-Computertomographie. Beim XRM-II nanoCT System handelt es sich um ein R{\"o}ntgenmikroskop, welches in ein Rasterelektronenmikroskop integriert ist, und auf dem Prinzip der geometrischen Vergr{\"o}ßerung basiert. Neben zweidimensionalen Durchstrahlungsbildern ist dieses Mikroskop auch zur dreidimensionalen Bildgebung mittels Computertomographie f{\"a}hig. Der Ausgangspunkt f{\"u}r die Weiterentwicklung ist das XRM-II, mit welchem bereits Computertomographien im Nanometerbereich m{\"o}glich waren. Deren Aufnahmedauer liegt zwischen 14 und 21 Tagen, was das System trotz seiner hohen Aufl{\"o}sung wenig praktikabel macht. Durch eine Anpassung der Blendeneinstellungen am Rasterelektronenmikroskop konnte der Strahlstrom um den Faktor 40 erh{\"o}ht und damit die Aufnahmedauer auf 24 Stunden reduziert werden, wobei weiterhin eine zweidimensionale Aufl{\"o}sung von \(167 \pm 9\) nm erreicht wird. Durch die Trennung von Objekt- und Targetmanipulator lassen sich beide unabh{\"a}ngig und genauer bewegen, wodurch es m{\"o}glich ist selbst 50 nm große Strukturen abzubilden. Die Charakterisierung erfolgt sowohl f{\"u}r das komplette System als auch getrennt in die entscheidenden Komponenten wie Target und Detektor. F{\"u}r das R{\"o}ntgentarget werden Monte-Carlo Simulationen zur Brennfleckgr{\"o}ße, welche entscheidend f{\"u}r die erreichbare Aufl{\"o}sung ist, durchgef{\"u}hrt und mit Aufl{\"o}sungstests verglichen. Der R{\"o}ntgendetektor wird hinsichtlich seiner spektralen Aufl{\"o}sung {\"u}berpr{\"u}ft, welche haupts{\"a}chlich vom Charge Sharing Effekt beeinflusst wird. Die Charakterisierung des Gesamtsystems erfolgt durch den Vergleich mit einer h{\"o}her aufl{\"o}senden Bildgebungsmethode, der FIB Tomographie. Hierbei wird die gleiche Probe, ein Bruchst{\"u}ck einer CPU, mit beiden Methoden unter der Voraussetzung einer {\"a}hnlichen Aufnahmezeit (24 h) untersucht. In der nano-CT kann ein 12 mal gr{\"o}ßeres Volumen analysiert werden, was jedoch eine geringere r{\"a}umliche Aufl{\"o}sung als die FIB Tomographie mit sich bringt. Da die spektrale Aufl{\"o}sung des Detektors aufgrund des Charge Sharing begrenzt ist, lassen sich nur Materialien mit einem großen Unterschied in der Ordnungszahl mittels der Energieschwellen des Detektors trennen. Jedoch kann in Verbindung mit der geeigneten Wahl des Targetmaterials der Absorptionskontrast f{\"u}r leichte Materialien, wie beispielsweise \(SiO_2\) verbessert werden. Dar{\"u}ber hinaus ist es am XRM-II nanoCT m{\"o}glich, durch das integrierte EDX-System, Elemente in der Computertomographie zu identifizieren. Dies wird anhand eines Drei-Wegekatalysators und eines NCA-Partikel gezeigt.}, subject = {Computertomographie}, language = {de} } @phdthesis{Armer2023, author = {Armer, Melina Brigitte Melanie}, title = {High-Quality Lead-Free Double Perovskite Single Crystals and their Optical Properties}, doi = {10.25972/OPUS-32750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The presented thesis deals with the investigation of the characteristic physical properties of lead-free double perovskites. For this purpose lead-free double perovskite single crystals were grown from solution. In order to assess the influence of growth temperature on tail states in the material, the crystals were studied using Photoluminescence Excitation (PLE) and Transmission measurements. Additionally, lead-free double perovskite solar cells and thin films were investigated to address the correlation of precursor stoichiometry and solar cell efficiency. In a last step a new earth abundant lead-free double perovskite was introduced and its physical properties were studied by photoluminescene and absorptance. Like this it was possible to assess the suitability of this material for solar cell applications in the future.}, subject = {Perowskit}, language = {en} } @phdthesis{Baumgaertner2023, author = {Baumg{\"a}rtner, Kiana Jasmin}, title = {Spectroscopic Investigation of the Transient Interplay at Hybrid Molecule-Substrate Interfaces after Photoexcitation: Ultrafast Electronic and Atomic Rearrangements}, doi = {10.25972/OPUS-33053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis is aimed at establishing modalities of time-resolved photoelectron spectroscopy (tr-PES) conducted at a free-electron laser (FEL) source and at a high harmonic generation (HHG) source for imaging the motion of atoms, charge and energy at photoexcited hybrid organic/inorganic interfaces. Transfer of charge and energy across interfaces lies at the heart of surface science and device physics and involves a complex interplay between the motion of electrons and atoms. At hybrid organic/inorganic interfaces involving planar molecules, such as pentacene and copper(II)-phthalocyanine (CuPc), atomic motions in out-of-plane direction are particularly apparent. Such hybrid interfaces are of importance to, e.g., next-generation functional devices, smart catalytic surfaces and molecular machines. In this work, two hybrid interfaces - pentacene atop Ag(110) and copper(II)-phthalocyanine (CuPc) atop titanium disulfide (1T-TiSe2) - are characterized by means of modalities of tr-PES. The experiments were conducted at a HHG source and at the FEL source FLASH at Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany). Both sources provide photon pulses with temporal widths of ∼ 100 fs and thus allow for resolving the non-equilibrium dynamics at hybrid interfaces involving both electronic and atomic motion on their intrinsic time scales. While the photon energy at this HHG source is limited to the UV-range, photon energies can be tuned from the UV-range to the soft x-ray-range at FLASH. With this increased energy range, not only macroscopic electronic information can be accessed from the sample's valence and conduction states, but also site-specific structural and chemical information encoded in the core-level signatures becomes accessible. Here, the combined information from the valence band and core-level dynamics is obtained by performing time- and angle-resolved photoelectron spectroscopy (tr-ARPES) in the UV-range and subsequently performing time-resolved x-ray photoelectron spectroscopy (tr-XPS) and time-resolved photoelectron diffraction (tr-XPD) in the soft x-ray regime in the same experimental setup. The sample's bandstructure in energy-momentum space and time is captured by a time-of-flight momentum microscope with femtosecond temporal and sub-{\AA}ngstr{\"o}m spatial resolutions. In the investigated systems, out-of-equilibrium dynamics are traced that are connected to the transfer of charge and energy across the hybrid interfaces. While energetic shifts and complementary population dynamics are observed for molecular and substrate states, the shapes of involved molecular orbitals change in energy-momentum space on a subpicosecond time scale. In combination with theory support, these changes are attributed to iiiatomic reorganizations at the interface and transient molecular structures are reconstructed with sub-{\AA}ngstr{\"o}m precision. Unique to the material combination of CuPc/TiSe2, a structural rearrangement on the macroscopic scale is traced simultaneously: ∼ 60 \% of the molecules undergo a concerted, unidirectional in-plane rotation. This surprising observation and its origin are detailed in this thesis and connected to a particularly efficient charge transfer across the CuPc/TiSe2 interface, resulting in a charging of ∼ 45 \% of CuPc molecules.}, subject = {ARPES}, language = {en} } @phdthesis{Scheffler2023, author = {Scheffler, Lukas}, title = {Molecular beam epitaxy of the half-Heusler antiferromagnet CuMnSb}, doi = {10.25972/OPUS-32283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322839}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work presents a newly developed method for the epitaxial growth of the half-Heusler antiferromagnet CuMnSb. All necessary process steps, from buffer growth to the deposition of a protective layer, are presented in detail. Using structural, electrical, and magnetic characterization, the material parameters of the epitaxial CuMnSb layers are investigated. The successful growth of CuMnSb by molecular beam epitaxy is demonstrated on InAs (001), GaSb (001), and InP (001) substrates. While CuMnSb can be grown pseudomorphically on InAs and GaSb, the significant lattice mismatch for growth on InP leads to relaxation already at low film thicknesses. Due to the lower conductivity of GaSb compared to InAs, GaSb substrates are particularly suitable for the fabrication of CuMnSb layers for lateral electrical transport experiments. However, by growing a high-resistive ZnTe interlayer below the CuMnSb layer, lateral transport experiments on CuMnSb layers grown on InAs can also be realized. Protective layers of Ru and Al2O3 have proven to be suitable for protecting the CuMnSb layers from the environment. Structural characterization by high resolution X-ray diffraction (full width at half maximum of 7.7 ′′ of the rocking curve) and atomic force microscopy (root mean square surface roughness of 0.14 nm) reveals an outstanding crystal quality of the epitaxial CuMnSb layers. The half-Heusler crystal structure is confirmed by scanning transmission electron microscopy and the stoichiometric material composition by Rutherford backscattering spectrometry. In line with the high crystal quality, a new minimum value of the residual resistance of CuMnSb (𝜌0 = 35 μΩ ⋅ cm) could be measured utilizing basic electrical transport experiments. An elaborate study of epitaxial CuMnSb grown on GaSb reveals a dependence of the vertical lattice parameter on the Mn/Sb flux ratio. This characteristic enables the growth of tensile, unstrained, and compressive strained CuMnSb layers on a single substrate material. Additionally, it is shown that the N{\´e}el temperature has a maximum of 62 K at stoichiometric material composition and thus can be utilized as a selection tool for stoichiometric CuMnSb samples. Mn-related defects are believed to be the driving force for these observations. The magnetic characterization of the epitaxial CuMnSb films is performed by superconducting quantum interference device magnetometry. Magnetic behavior comparable to the bulk material is found, however, an additional complex magnetic phase appears in thin CuMnSb films and/or at low magnetic fields, which has not been previously reported for CuMnSb. This magnetic phase is believed to be localized at the CuMnSb surface and exhibits both superparamagnetic and spin-glass-like behavior. The exchange bias effect of CuMnSb is investigated in combination with different in- and out-of-plane ferromagnets. It is shown that the exchange bias effect can only be observed in combination with in-plane ferromagnets. Finally, the first attempts at the growth of fully epitaxial CuMnSb/NiMnSb heterostructures are presented. Both magnetic and structural studies by secondary-ion mass spectrometry indicate the interdiffusion of Cu and Ni atoms between the two half-Heusler layers, however, an exchange bias effect can be observed for the CuMnSb/NiMnSb heterostructures. Whether this exchange bias effect originates from exchange interaction between the CuMnSb and NiMnSb layers, or from ferromagnetic inclusions in the antiferromagnetic layer can not be conclusively identified.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Imhof2023, author = {Imhof, Stefan Michael}, title = {The effects of non-Hermiticity and non-linearity on topological phenomena investigated in electric networks}, doi = {10.25972/OPUS-32332}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323329}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Topological phenomena known from solid state physics have been transferred to a variety of other classical and quantum systems. Due to the equivalence of the Hamiltonian matrix describing tight binding models and the grounded circuit Laplacian describing an electrical circuit we can investigate such phenomena in circuits. By implementing different Hermitian topological models general suggestions on designing those types of circuit are worked out with the aim of minimizing unwanted coupling effects and parasitic admittances in the circuit. Here the existence and the spatial profile of topological states as well as the band structure of the model can be determined. Due to the complex nature of electric admittance the investigations can be directly expanded to systems with broken Hermiticity. The particular advantages of the experimental investigation of non-exclusively topological phenomena by means of electric circuits come to light in the realization of non-Hermitian and non-linear models. Here we find limitation of the Hermitian bulk-boundary correspondence principle, purely real eigenvalues in non-Hermitian PT-symmetrical systems and edge localization of all eigenstates in non-Hermitian and non-reciprocal systems, which in literature is termed the non-Hermitian skin effect. When systems obeying non-linear equations are studied, the grounded circuit Laplacian based on the Fourier-transform cannot be applied anymore. By combination of the connectivity of a topological system together with non-linear van der Pol oscillators self-activated and self-sustained topological edge oscillations can be found. These robust high frequency sinusoidal edge oscillations differ significantly from low frequency relaxation oscillations, which can be found in the bulk of the system.}, subject = {Metamaterial}, language = {en} } @phdthesis{Reis2022, author = {Reis, Felix}, title = {Realization and Spectroscopy of the Quantum Spin Hall Insulator Bismuthene on Silicon Carbide}, doi = {10.25972/OPUS-25825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258250}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Topological matter is one of the most vibrant research fields of contemporary solid state physics since the theoretical prediction of the quantum spin Hall effect in graphene in 2005. Quantum spin Hall insulators possess a vanishing bulk conductivity but symmetry-protected, helical edge states that give rise to dissipationless charge transport. The experimental verification of this exotic state of matter in 2007 lead to a boost of research activity in this field, inspired by possible ground-breaking future applications. However, the use of the quantum spin Hall materials available to date is limited to cryogenic temperatures owing to their comparably small bulk band gaps. In this thesis, we follow a novel approach to realize a quantum spin Hall material with a large energy gap and epitaxially grow bismuthene, i.e., Bi atoms adopting a honeycomb lattice, in a \((\sqrt{3}\times\sqrt{3})\) reconstruction on the semiconductor SiC(0001). In this way, we profit both from the honeycomb symmetry as well as the large spin-orbit coupling of Bi, which, in combination, give rise to a topologically non-trivial band gap on the order of one electronvolt. An in-depth theoretical analysis demonstrates that the covalent bond between the Si and Bi atoms is not only stabilizing the Bi film but is pivotal to attain the quantum spin Hall phase. The preparation of high-quality, unreconstructed SiC(0001) substrates sets the basis for the formation of bismuthene and requires an extensive procedure in ultra-pure dry H\(_2\) gas. Scanning tunneling microscopy measurements unveil the (\(1\times1\)) surface periodicity and smooth terrace planes, which are suitable for the growth of single Bi layers by means of molecular beam epitaxy. The chemical configuration of the resulting Bi film and its oxidation upon exposure to ambient atmosphere are inspected with X-ray photoelectron spectroscopy. Angle-resolved photoelectron spectroscopy reveals the excellent agreement of probed and calculated band structure. In particular, it evidences a characteristic Rashba-splitting of the valence bands at the K point. Scanning tunneling spectroscopy probes signatures of this splitting, as well, and allows to determine the full band gap with a magnitude of \(E_\text{gap}\approx0.8\,\text{eV}\). Constant-current images and local-density-of-state maps confirm the presence of a planar honeycomb lattice, which forms several domains due to different, yet equivalent, nucleation sites of the (\(\sqrt{3}\times\sqrt{3}\))-Bi reconstruction. Differential conductivity measurements demonstrate that bismuthene edge states evolve at atomic steps of the SiC substrate. The probed, metallic local density of states is in agreement with the density of states expected from the edge state's energy dispersion found in density functional theory calculations - besides a pronounced dip at the Fermi level. By means of temperature- and energy-dependent tunneling spectroscopy it is shown that the spectral properties of this suppressed density of states are successfully captured in the framework of the Tomonaga-Luttinger liquid theory and most likely originate from enhanced electronic correlations in the edge channel.}, subject = {Zweidimensionales Material}, language = {en} } @phdthesis{Schmitt2022, author = {Schmitt, Matthias}, title = {High Energy Spin- and Momentum-Resolved Photoelectron Spectroscopy of Complex Oxides}, doi = {10.25972/OPUS-26475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Spin- and \(k\)-resolved hard X-ray photoelectron spectroscopy (HAXPES) is a powerful tool to probe bulk electronic properties of complex metal oxides. Due to the low efficiency of common spin detectors of about \(10^{-4}\), such experiments have been rarely performed within the hard X-ray regime since the notoriously low photoionization cross sections further lower the performance tremendously. This thesis is about a new type of spin detector, which employs an imaging spin-filter with multichannel electron recording. This increases the efficiency by a factor of \(10^4\) and makes spin- and \(k\)-resolved photoemission at high excitation energies possible. Two different technical approaches were pursued in this thesis: One using a hemispherical deflection analyzer (HDA) and a separate external spin detector chamber, the other one resorting to a momentum- or \(k\)-space microscope with time-of-flight (TOF) energy recording and an integrated spin-filter crystal. The latter exhibits significantly higher count rates and - since it was designed for this purpose from scratch - the integrated spin-filter option found out to be more viable than the subsequent upgrade of an existing setup with an HDA. This instrumental development is followed by the investigation of the complex metal oxides (CMOs) KTaO\(_3\) by angle-resolved HAXPES (HARPES) and Fe\(_3\)O\(_4\) by spin-resolved HAXPES (spin-HAXPES), respectively. KTaO\(_3\) (KTO) is a band insulator with a valence-electron configuration of Ta 5\(d^0\). By angle- and spin-integrated HAXPES it is shown that at the buried interface of LaAlO\(_3\)/KTO - by the generation of oxygen vacancies and hence effective electron doping - a conducting electron system forms in KTO. Further investigations using the momentum-resolution of the \(k\)-space TOF microscope show that these states are confined to the surface in KTO and intensity is only obtained from the center or the Gamma-point of each Brillouin zone (BZ). These BZs are furthermore square-like arranged reflecting the three-dimensional cubic crystal structure of KTO. However, from a comparison to calculations it is found that the band structure deviates from that of electron-doped bulk KTaO\(_3\) due to the confinement to the interface. There is broad consensus that Fe\(_3\)O\(_4\) is a promising material for spintronics applications due to its high degree of spin polarization at the Fermi level. However, previous attempts to measure the spin polarization by spin-resolved photoemission spectroscopy have been hampered by the use of low photon energies resulting in high surface sensitivity. The surfaces of magnetite, though, tend to reconstruct due to their polar nature, and thus their magnetic and electronic properties may strongly deviate from each other and from the bulk, dependent on their orientation and specific preparation. In this work, the intrinsic bulk spin polarization of magnetite at the Fermi level (\(E_F\)) by spin-resolved photoelectron spectroscopy, is determined by spin-HAXPES on (111)-oriented thin films, epitaxially grown on ZnO(0001) to be \(P(E_F) = -80^{+10}_{-20}\) \%.}, subject = {Elektronenkorrelation}, language = {en} } @phdthesis{Mahler2022, author = {Mahler, David}, title = {Surface states in the topological material HgTe}, doi = {10.25972/OPUS-25398}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-253982}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The motivation for this work has been contributing a step to the advancement of technology. A next leap in technology would be the realization of a scalable quantum computer. One potential route is via topological quantum computing. A profound understanding of topological materials is thus essential. My work contributes by the investigation of the exemplary topological material HgTe. The focus lies on the understanding of the topological surface states (TSS) and new possibilities to manipulate them appropriately. Traditionally top gate electrodes are used to adjust the carrier density in such semi-conductor materials. We found that the electric field of the top gate can further alter the properties of the HgTe layer. The formation of additional massive Volkov-Pankratov states limits the accessibility of the TSS. The understanding of these states and their interplay with the TSS is necessary to appropriately design devices and to ensure their desired properties. Similarly, I observed the existence and stability of TSSs even without a bandgap in the bulk band structure in the inversion induced Dirac semi-metal phase of compressively strained HgTe. The finding of topological surface states in inversion-induced Dirac semi-metals provides a consistent and simple explanation for the observation reported for \(\text{Cd}_3\text{As}_2\). These observations have only been possible due to the high quality of the MBE grown HgTe layers and the access of different phases of HgTe via strain engineering. As a starting point I performed Magneto-transport measurements on 67 nm thick tensilely strained HgTe layers grown on a CdTe substrate. We observed multiple transport channels in this three-dimensional topological insulator and successfully identified them. Not only do the expected topological surface states exist, but also additional massive surface states have been observed. These additional massive surface states are formed due to the electrical field applied at the top gate, which is routinely used to vary the carrier density in the HgTe layer. The additional massive surface states are called Volkov-Pankratov states after B. A. Volkov and O. A. Pankratov. They predicted the existence of similar massive surface states at the interface of materials with mutually inverted bands. We first found indications for such massive Volkov-Pankratov states in high-frequency compressibility measurements for very high electron densities in a fruitful collaboration with LPA in Paris. Magneto-transport measurements and \(k \cdot p\) calculations revealed that such Volkov-Pankratov states are also responsible for the observed whole transport. We also found indications for similar massive VPS in the electron regime, which coexist with the topological surface states. The topological surface states exist over the full investigated gate range including a regime of pure topological insulator transport. To increase the variability of the topological surface states we introduced a modulation doping layer in the buffer layer. This modulation doping layer also enabled us to separate and identify the top and bottom topological surface states. We used the variability of the bulk band structure of HgTe with strain to engineer the band structure of choice using virtual substrates. The virtual substrates enable us to grow compressively strained HgTe layers that do not possess a bandgap, but instead linear crossing points. These layers are predicted to beDirac semi-metals. Indeed I observed also topological surface states and massive Volkov-Pankratov states in the compressively strained Dirac semi-metal phase. The observation of topological surfaces states also in the Dirac semi-metal phase has two consequences: First, it highlights that no bulk bandgap is necessary to observe topological surface states. Second, the observation of TSS also in the Dirac semi-metal phase emphasizes the importance of the underlying band inversion in this phase. I could not find any clear signatures of the predicted disjoint topological surface states, which are typically called Fermi-arcs. The presence of topological surface states and massive Volkov-Pankratov states offer a simple explanation for the observed quantum Hall effect and other two-dimensional transport phenomena in the class of inversion induced Dirac semi-metals, as \(\text{Cd}_3\text{As}_2\). This emphasizes the importance of the inherent bulk band inversion of different topological materials and provides a consistent and elegant explanation for the observed phenomena in these materials. Additionally, it offers a route to design further experiments, devices, and thus the foundation for the induction of superconductivity and thus topological quantum computing. Another possible path towards quantum computing has been proposed based on the chiral anomaly. The chiral anomaly is an apparent transport anomaly that manifests itself as an additional magnetic field-driven current in three-dimensional topological semimetals with a linear crossing point in their bulk band structure. I observed the chiral anomaly in compressively strained HgTe samples and performed multiple control experiments to identify the observed reduction of the magnetoresistance with the chiral anomaly. First, the dependence of the so-called negative magnetoresistance on the angle and strength of the magnetic field has been shown to fit the expectation for the chiral anomaly. Second, extrinsic effects as scattering could be excluded as a source for the observed negative MR using samples with different mobilities and thus impurity concentrations. Third, the necessity of the linear crossing point has been shown by shifting the electrochemical potential away from the linear crossing points, which diminished the negative magnetoresistance. Fourth, I could not observe a negative magnetoresistance in the three-dimensional topological insulator phase of HgTe. These observations together prove the existence of the chiral anomaly and verify compressively strained HgTe as Dirac semi-metal. Surprisingly, the chiral anomaly is also present in unstrained HgTe samples, which constitute a semi-metal with a quadratic band touching point. This observation reveals the relevance of the Zeeman effect for the chiral anomaly due to the lifting of the spin-degeneracy in these samples. Additionally to the chiral anomaly, the Dirac semi-metal phase of compressively strained HgTe showed other interesting effects. For low magnetic fields, a strong weak-antilocalization has been observed. Such a strong weak-anti-localization correction in a three-dimensional layer is surprising and interesting. Additionally, non-trivial magnetic field strength and direction dependencies have been observed. These include a strong positive magnetoresistance for high magnetic fields, which could indicate a metal-insulator transition. On a more device-oriented note, the semi-metal phase of unstrained HgTe constitutes the lower limit of the by strain engineering adjustable minimal carrier density of the topological surface states and thus of very high mobility. To sum up, topological surface states have been observed in the three-dimensional topological insulator phase and the Dirac semi-metal phase of HgTe. The existence and accessibility of topological surface states are thus independent of the existence of a bandgap in the bulk band structure. The topological surface states can be accompanied by massive Volkov-Pankratov states. These VPS are created by electric fields, which are routinely applied to adjust the carrier density in semiconductor devices. The theoretical predicted chiral anomaly has been observed in the Dirac semi-metal phase of HgTe. In contrast to theoretical predictions, no indications for the Fermi-arc called disjoint surface states have been observed, but instead the topological and massive Volkov-Pankratov surface states have been found. These states are thus expected for all inversion-induced topological materials.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Niehoerster2022, author = {Nieh{\"o}rster, Thomas}, title = {Spektral aufgel{\"o}ste Fluoreszenzlebensdauer-Mikroskopie mit vielen Farben}, doi = {10.25972/OPUS-29657}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296573}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode f{\"u}r biologische Proben, bei der Biomolek{\"u}le selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolek{\"u}len gleichzeitig m{\"o}glich, wobei {\"u}blicherweise verschiedene Farbstoffe eingesetzt werden, die {\"u}ber ihre Spektren unterschieden werden k{\"o}nnen. Um die Anzahl gleichzeitig verwendbarer F{\"a}rbungen zu maximieren, wird in dieser Arbeit zus{\"a}tzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgel{\"o}ster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenl{\"a}ngen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Aufl{\"o}sung von 32 Kan{\"a}len und gleichzeitig mit sehr hoher zeitlicher Aufl{\"o}sung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so f{\"u}r jedes Pixel die Beitr{\"a}ge der einzelnen Farbstoffe. Mit dieser Technik konnten pro Anregungslaser f{\"u}nf verschiedene F{\"a}rbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 F{\"a}rbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun F{\"a}rbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivit{\"a}t des sFLIM-Systems genutzt werden, um verschiedene Zielmolek{\"u}le voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war m{\"o}glich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmolek{\"u}ls geringf{\"u}gig in Abh{\"a}ngigkeit von seiner Umgebung {\"a}ndern. Weiterhin konnte die sFLIM-Technik mit der hochaufl{\"o}senden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgel{\"o}ste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser ben{\"o}tigt wurde. Die gleichzeitige Erfassung von mehreren photophysikalischen Messgr{\"o}ßen sowie deren Auswertung durch den Pattern-Matching-Algorithmus erm{\"o}glichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie f{\"u}r Mehrfachf{\"a}rbungen.}, subject = {Fluoreszenzmikroskopie}, language = {de} } @phdthesis{Iff2022, author = {Iff, Oliver}, title = {Implementierung und Charakterisierung von Einzelphotonenquellen in zweidimensionalen Übergangsmetall-Dichalkogeniden und deren Kopplung an optische Resonatoren}, doi = {10.25972/OPUS-28140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281404}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Schon heute bilden Einzelphotonenquellen einen wichtigen Baustein in der Photonik und Quanteninformation. Der Fokus der Forschung liegt entsprechend auf dem Finden und Charakterisieren daf{\"u}r geeigneter Materialsysteme. Konkret beschäftigt sich die vorliegende Arbeit vorwiegend mit dem Übergangsmetall-Dichalkogenid (TMDC1 ) Wolframdiselenid und seinen Eigenschaften. Diese Wahl ist durch den direkte Zugang zu Einzelphotonenquellen begr{\"u}ndet, die sich in dessen Monolagen ausbilden können. Diese Lichtquellen können {\"u}ber eine Modulation der Verspannung der Monolage gezielt aktiviert werden. Durch die, verglichen mit ihrem Volumen, riesige Kontaktfläche lassen sich Monolagen zudem mit Hilfe des Substrats, auf das sie transferiert wurden, wesentlich beeinflussen. Im Rahmen dieser Arbeit wurden Monolagen von WSe2 in unterschiedlichen Bauteilen wie zirkulare Bragg-Gittern oder vorstrukturierten, metallischen Oberflächen implementiert und die Photolumineszenz des TMDCs untersucht. Diese Arbeit belegt die Möglichkeit, Einzelphotonenquellen basierend aufWSe2 -Monolagen auf verschiedenste Weise modulieren zu können. Dank ihrer zwei- dimensionalen Geometrie lassen sie sich einfach in bestehende Strukturen integrieren oder auch in der Zukunft mit weiteren 2D-Materialien kombinieren.}, subject = {Einzelphotonenemission}, language = {de} } @phdthesis{Hoecker2022, author = {H{\"o}cker, Julian Harald}, title = {High-quality Organolead Trihalide Perovskite Crystals: Growth, Characterisation, and Photovoltaic Applications}, doi = {10.25972/OPUS-25859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258590}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Overview of the Organolead Trihalide Perovskite Crystal Area Studies of perovskite single crystals with high crystallographic quality is an important technological area of the perovskite research, which enables to estimate their full optoelectronic potential, and thus to boost their future applications [26]. It was therefore essential to grow high-quality single crystals with lowest structural as well as chemical defect densities and with a stoichiometry relevant for their thin-film counterparts [26]. Optoelectronic devices, e.g. solar cells, are highly complex systems in which the properties of the active layer (absorber) are strongly influenced by the adjacent layers, so it is not always easy to define the targeted properties and elaborate the design rules for the active layer. Currently, organolead trihalide perovskite (OLTP) single crystals with the structure ABX3 are one of the most studied crystalline systems. These hybrid crystals are solids composed of an organic cation such as methylammonium (A = MA+) or formamidinium (A = FA+) to form a three-dimensional periodic lattice together with the lead cation (B = Pb2+) and a halogen anion such as chloride, bromide or iodide (X = Cl-, Br- or I-) [23]. Among them are methylammonium lead tribromide (MAPbBr3), methylammonium lead triiodide (MAPbI3), as well as methylammonium lead trichloride (MAPbCl3) [62, 63]. Important representatives with the larger cation FA+ are formamidinium lead tribromide (FAPbBr3) and formamidinium lead triiodide (FAPbI3) [23, 64]. Besides the exchange of cations as well as anions, it was possible to grow crystals containing two halogens to obtain mixed crystals with different proportions of chlorine to bromine and bromine to iodine, as it is shown in Figure 70. By varying the mixing ratio of the halogens, it was therefore possible to vary the colour and thus the absorption properties of the crystals [85], as it can be done with thin polycrystalline perovskite films. In addition, since a few years it is also doable to grow complex crystals that contain several cations as well as anions [26, 80, 81]. These include the perovskites double cation - double halide formamidinium lead triiodide - methylammonium lead tribromide (FAPbI3)0.9(MAPbBr3)0.1 (FAMA) [26, 80] and formamidinium lead triiodide - methylammonium lead tribromide - caesium lead tribromide (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05 (CsFAMA) [81], which have made a significant contribution to increase the power conversion efficiency (PCE) in thin-film photovoltaics [47, 79, 182]. The growth of crystals to this day is performed exclusively from solution [23, 26, 56, 62]. Important preparation methods are the cooling acid-based precursor solution crystallisation [22], the inverse temperature crystallisation (ITC) [62], and the antisolvent vapour-assistant crystallisation (AVC) [137]. In the cooling crystallisation, the precursor salts AX and PbX2 are dissolved in an aqueous halogen-containing acid at high temperatures [56]. Controlled and slow cooling finally results in a supersaturated precursor solution, which leads to spontaneous nucleation of crystal nuclei, followed by subsequent crystal growth. The ITC method is based on the inverse or retrograde solubility of a dissociated perovskite in an organic solvent [23, 64]. With increasing temperature, the solubility of the perovskite decreases and mm-sized crystals can be grown within a few hours [23]. In the AVC method, the precursors are also dissolved in an organic solvent as well [137]. By slow evaporation of a so-called antisolvent [137], the solubility of the perovskite in the now present solvent mixture decreases and it finally precipitates. In addition, there are many other methods with the goal of growing high quality and large crystals in a short period of time [60, 61, 233, 310].}, subject = {Perowskit}, language = {en} } @phdthesis{Strunz2022, author = {Strunz, Jonas}, title = {Quantum point contacts in HgTe quantum wells}, doi = {10.25972/OPUS-27459}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274594}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Quantenpunktkontakte (englisch: quantum point contacts, QPCs) sind eindimensionale Engstellen in einem ansonsten zweidimensionalen Elektronen- oder Lochsystem. Seit der erstmaligen Realisierung in GaAs-basierten zweidimensionalen Elektronengasen sind QPCs sukzessive zu einem Grundbestandteil mesoskopischer Physik geworden und erfahren in einer Vielzahl von Experimenten Anwendung. Jedoch ist es bis zur Anfertigung der vorliegenden Arbeit nicht gelungen, QPCs in der neuen Materialklasse der zweidimensionalen topologischen Isolatoren zu realisieren. In diesen Materialien tritt der sogenannte Quanten-Spin-Hall-Effekt (QSH-Effekt) auf, welcher sich durch die Ausbildung von leitf{\"a}higen, eindimensionalen sowie gleichermaßen spinpolarisierten Zust{\"a}nden an der Bauteilkante auszeichnet, w{\"a}hrend die restlichen Bereiche der Probe isolierend sind. Ein in einem zweidimensionalen topologischen Isolator realisierter QPC kann demgem{\"a}ß daf{\"u}r benutzt werden, die sich stets an der Bauteilkante befindlichen QSH-Randkan{\"a}le einander r{\"a}umlich anzun{\"a}hern, was beispielsweise die Untersuchung potentieller Wechselwirkungseffekte zwischen ebenjenen Randkan{\"a}len erm{\"o}glicht. Die vorliegende Arbeit beschreibt die erstmalig erfolgreich durchgef{\"u}hrte Implementierung einer QPC-Technologie in einem QSH-System. {\"U}berdies werden die neuartigen Bauteile experimentell charakterisiert sowie analysiert. Nach einer in Kapitel 1 erfolgten Einleitung der Arbeit besch{\"a}ftigt sich das nachfolgende Kapitel 2 zun{\"a}chst mit der besonderen Bandstruktur von HgTe. In diesem Kontext wird die Ausbildung der QSH-Phase f{\"u}r HgTe-Quantentr{\"o}ge mit einer invertierten Bandstruktur erl{\"a}utert, welche f{\"u}r deren Auftreten eine Mindesttrogdicke von d_QW > d_c = 6.3 nm aufweisen m{\"u}ssen. Im Anschluss wird das Konzept eines QPCs allgemein eingef{\"u}hrt sowie das zugeh{\"o}rige Transportverhalten analytisch beschrieben. {\"U}berdies werden die Einschr{\"a}nkungen und Randbedingungen diskutiert, welche bei der Realisierung eines QPCs in einem QSH-System Ber{\"u}cksichtigung finden m{\"u}ssen. Darauf folgt die Pr{\"a}sentation des eigens zur QPC-Herstellung entwickelten Lithographieprozesses, welcher auf einer mehrstufigen Anwendung eines f{\"u}r HgTe-Quantentrogstrukturen geeigneten nasschemischen {\"A}tzverfahrens beruht. Die im Nachgang diskutierten Transportmessungen exemplarischer Proben zeigen die erwartete Leitwertquantisierung in Schritten von ΔG ≈ 2e^2/h im Bereich des Leitungsbandes -- sowohl f{\"u}r eine topologische als auch f{\"u}r eine triviale (d_QW < d_c) QPC-Probe. Mit dem Erreichen der Bandl{\"u}cke saturiert der Leitwert f{\"u}r den topologischen QPC um G_QSH ≈ 2e^2/h, wohingegen ebenjener f{\"u}r den Fall des trivialen Bauteils auf G ≈ 0 abf{\"a}llt. Dar{\"u}ber hinaus belegen durchgef{\"u}hrte Messungen des differentiellen Leitwertes einer invertierten QPC-Probe in Abh{\"a}ngigkeit einer Biasspannung die stabile Koexistenz von topologischen und trivialen Transportmoden. Gegenstand von Kapitel 3 ist die Beschreibung der Ausbildung eines QSH-Interferometers in QPCs mit geringer Weite, welche unter Verwendung von Quantentr{\"o}gen mit einer Trogdicke von d_QW = 7 nm hergestellt werden. Die Diskussion von Bandstrukturrechnungen legt dar, dass die r{\"a}umliche Ausdehnung der Randkan{\"a}le von der jeweiligen Position der Fermi-Energie im Bereich der Bandl{\"u}cke abh{\"a}ngt. Hieraus resultiert eine Transportsituation, in welcher -- unter bestimmten Voraussetzungen -- Reservoir-Elektronen mit randomisiertem Spin an beide QSH-Randkan{\"a}le mit gleicher Wahrscheinlichkeit koppeln, was in der Ausbildung eines QSH-Rings resultiert. Diese Ringbildung wird im Rahmen eines durch Plausibilit{\"a}ts{\"u}berpr{\"u}fung getesteten Modells erkl{\"a}rt und spezifiziert. Danach erfolgt eine theoretische Einf{\"u}hrung von drei relevanten Quantenphasen, deren Akkumulation in der Folge f{\"u}r mehrere geeignete QPC-Proben nachgewiesen wird. Es handelt sich hierbei um die Aharonov-Bohm-Phase, um die dynamische Aharonov-Casher-Phase sowie um eine Spin-Bahn-Berry-Phase mit einem Wert von π. Diese experimentellen Ergebnisse stehen dar{\"u}ber hinaus im Einklang mit analytischen Modellbetrachtungen. Das anschließende Kapitel 4 stellt den letzten Teil der Arbeit dar und besch{\"a}ftigt sich mit der Beobachtung einer anomalen Leitwertsignatur, welche f{\"u}r QPC-Proben basierend auf einer Quantentrogdicke von d_QW = 10.5 nm auftritt. Diese Proben zeigen neben der durch die QSH-Phase bedingten Leitwertquantisierung von G_QSH ≈ 2e^2/h ein weiteres Leitwertplateau mit einem Wert von G ≈ e^2/h = 0.5 x G_QSH. Diese sogenannte 0.5-Anomalie ist nur f{\"u}r ein kleines Intervall von QPC-Weiten beobachtbar und wird mit zunehmender Bauteilweite abgeschw{\"a}cht. Weiterf{\"u}hrende Untersuchungen in Abh{\"a}ngigkeit der Temperatur sowie einer angelegten Biasspannung deuten dar{\"u}ber hinaus darauf hin, dass das Auftreten der 0.5-Anomalie mit einem modifizierten topologischen Zustand einhergeht. {\"U}berdies wird eine zus{\"a}tzliche sowie vervollst{\"a}ndigende Charakterisierung dieses Transportregimes durch die Realisierung eines neuartigen Bauteilkonzeptes m{\"o}glich, welches einen QPC in eine standardisierte Hall-Bar-Geometrie integriert. Das Ergebnis der experimentellen Analyse einer solchen Probe verkn{\"u}pft das Auftreten der 0.5-Anomalie mit der R{\"u}ckstreuung eines QSH-Randkanals. Demgem{\"a}ß wird aus Sicht des Einteilchenbildes geschlussfolgert, dass im Kontext der 0.5-Anomalie lediglich ein Randkanal transmittiert wird. Zudem werden zwei theoretische Modelle basierend auf Elektron-Elektron-Wechselwirkungen diskutiert, welche beide jeweils als urs{\"a}chlicher Mechanismus f{\"u}r das Auftreten der 0.5-Anomalie in Frage kommen. Abschließend ist zu deduzieren, dass die Implementierung einer QPC-Technologie in einem QSH-System eine bedeutende Entwicklung im Bereich der Erforschung von zweidimensionalen topologischen Isolatoren darstellt, welche eine Vielzahl zuk{\"u}nftiger Experimente erm{\"o}glicht. So existieren beispielsweise theoretische Vorhersagen, dass QPCs in einem QSH-System die Detektion von Majorana- sowie Para-Fermionen erm{\"o}glichen. {\"U}berdies ist die nachgewiesene Ausbildung eines QSH-Interferometers in geeigneten QPC-Proben eine Beobachtung von großer Folgewirkung. So erm{\"o}glicht die beobachtete dynamische Aharonov-Casher-Phase im QSH-Regime die kontrollierbare Modulation des topologischen Leitwertes, was die konzeptionelle Grundlage eines topologischen Transistors darstellt. Eine weitere Anwendungsm{\"o}glichkeit wird durch die Widerstandsf{\"a}higkeit geometrischer Phasen gegen{\"u}ber Dephasierung er{\"o}ffnet, wodurch die nachgewiesene Spin-Bahn-Berry-Phase mit einem Wert von π im Kontext potentieller Quantencomputerkonzepte von Interesse ist. Dar{\"u}ber hinaus ist die Transmission von nur einem QSH-Randkanal im Zuge des Auftretens der 0.5-Anomalie {\"a}quivalent zu 100 \% Spinpolarisierung, was einen Faktor essentieller Relevanz f{\"u}r die Realisierung spintronischer Anwendungen darstellt. Demgem{\"a}ß beinhaltet die vorliegende Arbeit den experimentellen Nachweis von drei unterschiedlichen Effekten, von welchen jedem einzelnen eine fundamentale Rolle im Rahmen der Entwicklung neuer Generationen logischer Bauelemente zukommen kann -- erm{\"o}glicht durch die Realisierung von QPCs in topologischen HgTe-Quantentr{\"o}gen.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Schmitt2022, author = {Schmitt, Fabian Bernhard}, title = {Transport properties of the three-dimensional topological insulator mercury telluride}, doi = {10.25972/OPUS-29173}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-based devices ranging from hundreds of micrometers (macroscopic) down to a few micrometers in size (microscopic) in order to extend the overall understanding of surface states and the possibilities of their manipulation. In order to exploit the full potential of our high-quality heterostructures, it was necessary to revise and improve the existing lithographic fabrication process of macroscopic three-dimensional Hg(Mn)Te samples. A novel lithographic standard recipe for the fabrication of the HgTe-based macrostructures was developed. This recipe includes the use of an optimized Hall bar design and wet etching instead of etching with high-energy \(\mathrm{{Ar^{+}}}\)-ions, which can damage the samples. Further, a hafnium oxide insulator is applied replacing the SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\) dielectric in order to reduce thermal load. Moreover, the devices are metallized under an alternating angle to avoid discontinuities of the metal layers over the mesa edges. It was revealed that the application of gate-dielectric and top-gate metals results in n-type doping of the devices. This phenomenon could be attributed to quasi-free electrons tunneling from the trap states, which form at the interface cap layer/insulator, through the cap into the active layer. This finding led to the development of a new procedure to characterize wafer materials. It was found that the optimized lithographic processing steps do not unintentionally react chemically with our heterostructures, thus avoiding a degradation of the quality of the Hg(Mn)Te layer. The implementation of new contact structures Ti/Au, In/Ti/Au, and Al/Ti/Au did not result in any improvement compared to the standard structure AuGe/Au. However, a novel sample recipe could be developed, resulting in an intermixing of the contact metals (AuGe and Au) and fingering of metal into the mesa. The extent of the quality of the ohmic contacts obtained through this process has yet to be fully established. This thesis further deals with the lithographic realization of three-dimensional HgTe-based microstructures measuring only a few micrometer in size. Thus, these structures are in the order of the mean free path and the spin relaxation length of topological surface state electrons. A lithographic process was developed enabling the fabrication of nearly any desired microscopic device structure. In this context, two techniques suitable for etching microscopic samples were realized, namely wet etching and the newly established inductively coupled plasma etching. While wet etching was found to preserve the crystal quality of the active layer best, inductively coupled plasma etching is characterized by high reproducibility and excellent structural fidelity. Hence, the etching technique employed depends on the envisaged type of experiment. Magneto-transport measurements were carried out on the macroscopic HgTe-based devices fabricated by means of improved lithographic processing with respect to the transport properties of topological and massive surface states. It was revealed that due to the low charge carrier density present in the leads to the ohmic contacts, these regions can exhibit an insulating behavior at high magnetic fields and extremely low temperatures. As soon as the filling factor of the lowest Landau levels dropped below a critical value (\(\nu_{\mathrm{{c}}}\approx0.8\)), the conductance of the leads decreased significantly. It was demonstrated that the carrier density in the leads can be increased by the growth of modulation doping layers, a back-gate-electrode, light-emitting diode illumination, and by the application of an overlapping top-gate layout. This overlapping top-gate and a back-gate made it possible to manipulate the carrier density of the surface states on both sides of the Hg(Mn)Te layer independently. With this setup, it was identified that topological and massive surface states contribute to transport simultaneously in 3D Hg(Mn)Te. A model could be developed allowing the charge carrier systems populated in the sample to be determined unambiguously. Based on this model, the process of the re-entrant quantum Hall effect observed for the first time in three-dimensional topological insulators could be explained by an interplay of n-type topological and p-type massive surface states. A well-pronounced \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) sequence of quantum Hall plateaus was found in manganese-doped HgTe-based samples. It is postulated that this is the condensed-matter realization of the parity anomaly in three-dimensional topological insulators. The actual nature of this phenomenon can be the subject of further research. In addition, the measurements have shown that inter-scattering occurs between counter-propagating quantum Hall edge states. The good quantization of the Hall conductance despite this inter-scattering indicates that only the unpaired edge states determine the transport properties of the system as a whole. The underlying inter-scattering mechanism is the topic of a publication in preparation. Furthermore, three-dimensional HgTe-based microstructures shaped like the capital letter "H" were investigated regarding spin transport phenomena. The non-local voltage signals occurring in the measurements could be attributed to a current-induced spin polarization of the topological surface states due to electrons obeying spin-momentum locking. It was shown that the strength of this non-local signal is directly connected to the magnitude of the spin polarization and can be manipulated by the applied top-gate voltage. It was found that in these microstructures, the massive surface and bulk states, unlike the topological surface states, cannot contribute to this spin-associated phenomenon. On the contrary, it was demonstrated that the population of massive states results in a reduction of the spin polarization, either due to the possible inter-scattering of massive and topological surface states or due to the addition of an unpolarized electron background. The evidence of spin transport controllable by a top-gate-electrode makes the three-dimensional material system mercury telluride a promising candidate for further research in the field of spintronics.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Fijalkowski2022, author = {Fijalkowski, Kajetan Maciej}, title = {Electronic Transport in a Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\)}, doi = {10.25972/OPUS-28230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis focuses on investigating magneto-transport properties of a ferromagnetic topological insulator (V,Bi,Sb)2Te3. This material is most famously known for exhibiting the quantum anomalous Hall effect, a novel quantum state of matter that has opened up possibilities for potential applications in quantum metrology as a quantum standard of resistance, as well as for academic investigations into unusual magnetic properties and axion electrodynamics. All of those aspects are investigated in the thesis.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{GraetzgebDittmann2022, author = {Graetz [geb. Dittmann], Jonas}, title = {X-Ray Dark-Field Tensor Tomography : a Hitchhiker's Guide to Tomographic Reconstruction and Talbot Imaging}, doi = {10.25972/OPUS-28143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281437}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and oriented scattering thereby allows to infer orientations within a sample's microstructure below the imaging resolution. First demonstrations have shown the general feasibility of doing so in a tomographic fashion, based on various heuristic signal models and reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction technique practicable for general imaging geometries and large tensor valued volumes is developed based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques. To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is revisited. To begin with, a novel introduction to the mathematical description of perspective projections provides essential insights into the relations between the tangible real space properties of cone beam imaging geometries and their technically relevant description in terms of homogeneous coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach is developed, facilitating the practical determination of perspective imaging geometries with minimal experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection geometries, with a particular focus on the efficient evaluation of the forward problem associated with tomographic imaging. A highly performant 3D generalization of Joseph's classic linearly interpolating ray casting algorithm is developed to this end and compared to typical alternatives. With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature and supplemented by original work completing a consistent picture of the theory of dark-field origination. Key results are explicitly validated by experimental data with a special focus on tomography as well as the properties of anisotropic fibrous scatterers. In order to address the pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient optimization based evaluation strategy for the raw data provided by Talbot interferometers is developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of tensor valued volumes from projection images is proposed. The derived methods are efficiently implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations of both complex shaped and low-contrast samples at a spatial resolution of 0.1mm in 3D. The results are confirmed by an independent micro CT based fiber analysis.}, subject = {Dreidimensionale Rekonstruktion}, language = {en} } @phdthesis{Wiest2022, author = {Wiest, Wolfram}, title = {Entwicklung einer Apparatur zur In-situ-Erm{\"u}dungspr{\"u}fung von Zahnimplantaten mittels Synchrotron Micro-CT}, doi = {10.25972/OPUS-25770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257702}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der volumenbildgebenden Untersuchung von mechanischen Erm{\"u}dungsprozessen in Titan-Zahnimplantaten. Im Vordergrund steht die Entwicklung einer neuen Messmethode der In-situ-Mikrotomografie am Synchrotron. Zahnimplantate werden beim Gebrauch mechanisch wiederholt belastet (Wechsellast). Nach vielen zyklischen Belastungen k{\"o}nnen aufgrund von mikroplastische Verformungen Erm{\"u}dungssch{\"a}den auftreten. Diese k{\"o}nnen im Extremfall zum Versagen und Verlust eines Implantats f{\"u}hren. Die Computertomographie ist eine sehr geeignete zerst{\"o}rungsfrei Pr{\"u}fmethode, um Zahnimplantate zu untersuchen. Diese Arbeit erweitert die bisherige CT-Methode insofern, dass In-situ-Beobachtungen bei mechanischer Belastung m{\"o}glich sind. Die in dieser Arbeit untersuchten Zahnimplantate weisen an der Implantat-Abutment-Grenzfl{\"a}che bei eintretender Erm{\"u}dung einen Mikrospalt auf. Dieser wird als Indikator f{\"u}r einsetzende Fatigue- Prozesse benutzt. Der in der Synchrotron CT verf{\"u}gbare Inlinephasenkontrast erm{\"o}glicht eine verbesserte Bestimmung der Mikrospaltgr{\"o}ße. Da die schnellen Bewegungen der Erm{\"u}dungspr{\"u}fung mittels Standard-CT-Verfahren schwer zu erfassen sind, war die stroboskopische Aufnahmemethode das zielf{\"u}hrende Messverfahren, um in-situ-Pr{\"u}fung zu erm{\"o}glichen. Die 4 kommerziellen Zahnimplantattypen werden neben der In-situ-Fatigue Pr{\"u}fung auch mittels klassischer Erm{\"u}dungspr{\"u}fung untersucht und mit der Neuen Messmethode verglichen. Die hier entwickelte In-situ-Fatigue-Pr{\"u}fstation kann Proben bis zu 345 N tomographisch untersuchen. Neben den experimentellen Untersuchungen wird eine statische FEM-Betrachtung durchgef{\"u}hrt und mit experimentellen Messdaten verglichen. Zuletzt wird mit der entwickelten Messtation Knochenrisse in der Implantat Umgebung untersucht.}, subject = {Mikrocomputertomographie}, language = {de} } @phdthesis{Uenzelmann2022, author = {{\"U}nzelmann, Maximilian}, title = {Interplay of Inversion Symmetry Breaking and Spin-Orbit Coupling - From the Rashba Effect to Weyl Semimetals}, doi = {10.25972/OPUS-28310}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Breaking inversion symmetry in crystalline solids enables the formation of spin-polarized electronic states by spin-orbit coupling without the need for magnetism. A variety of interesting physical phenomena related to this effect have been intensively investigated in recent years, including the Rashba effect, topological insulators and Weyl semimetals. In this work, the interplay of inversion symmetry breaking and spin-orbit coupling and, in particular their general influence on the character of electronic states, i.e., on the spin and orbital degrees of freedom, is investigated experimentally. Two different types of suitable model systems are studied: two-dimensional surface states for which the Rashba effect arises from the inherently broken inversion symmetry at the surface, and a Weyl semimetal, for which inversion symmetry is broken in the three-dimensional crystal structure. Angle-resolved photoelectron spectroscopy provides momentum-resolved access to the spin polarization and the orbital composition of electronic states by means of photoelectron spin detection and dichroism with polarized light. The experimental results shown in this work are also complemented and supported by ab-initio density functional theory calculations and simple model considerations. Altogether, it is shown that the breaking of inversion symmetry has a decisive influence on the Bloch wave function, namely, the formation of an orbital angular momentum. This mechanism is, in turn, of fundamental importance both for the physics of the surface Rashba effect and the topology of the Weyl semimetal TaAs.}, subject = {Rashba-Effekt}, language = {en} } @phdthesis{Mueller2022, author = {M{\"u}ller, Valentin Leander}, title = {Transport signatures of topological and trivial states in the three-dimensional topological insulator HgTe}, doi = {10.25972/OPUS-25952}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259521}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The thesis at hand is concerned with improving our understanding of and our control over transport properties of the three-dimensional topological insulator HgTe. Topological insulators are characterized by an insulating bulk and symmetry-protected metallic surface states. These topological surface states hold great promise for research and technology; at the same time, many properties of experimentally accessible topological insulator materials still need to be explored thoroughly. The overall aim of this thesis was to experimentally investigate micrometer-sized HgTe transport devices to observe the ballistic transport regime as well as intercarrier scattering and possibly identify special properties of the topological surface states. Part I of the thesis presents lithographic developments concerned with etching small HgTe devices. The aim was to replace existing processes which relied on dry etching with high-energy \(\text{Ar}^+\) ions and an organic etch mask. This etching method is known to degrade the HgTe crystal quality. In addition, the etch mask turned out to be not durable for long etching processes and difficult to remove completely after etching. First, \(\text{BaF}_2\) was introduced as a new etch mask for dry etching to replace the organic etch mask. With common surface characterization techniques like SEM and XPS it was shown that \(\text{BaF}_2\) etch masks are easy to deposit, highly durable in common dry etching processes for \(\text{Hg}_{1-x}\text{Cd}_x\text{Te}\), and easy to remove in deionized water. Transport results of HgTe devices fabricated with the new etch mask are comparable to results obtained with the old process. At the same time, the new etch mask can withstand longer etching times and does not cause problems due to incomplete removal. Second, a new inductively coupled plasma dry etching process based on \(\text{CH}_4\) and Ar was introduced. This etching process is compatible with \(\text{BaF}_2\) etch masks and yields highly reproducible results. Transport results indicate that the new etching process does not degrade the crystal quality and is suitable to produce high-quality transport devices even in the micrometer range. A comparison with wet-etched samples shows that inductively coupled plasma etching introduces a pronounced edge roughness. This - usually undesirable - property is actually beneficial for some of the experiments in this study and mostly irrelevant for others. Therefore, most samples appearing in this thesis were fabricated with the new process. Part II of the thesis details the advancements made in identifying topological and trivial states which contribute to transport in HgTe three-dimensional topological insulators. To this end, macroscopic Hall bar samples were fabricated from high-quality tensilely strained HgTe layers by means of the improved lithographic processes. All samples were equipped with a top gate electrode, and some also with a modulation doping layer or a back gate electrode to modify the carrier density of the surface states on both sides of the HgTe layer. Due to the high sample quality, Landau levels could be well-resolved in standard transport measurements down to magnetic fields of less than 0.5T. High-resolution measurements of the Landau level dispersion with gate voltage and magnetic field allowed disentangling different transport channels. The main result here is that the upper (electron) branches of the two topological surface states contribute to transport in all experimentally relevant density regimes, while the hole branch is not accessible. Far in n-regime bulk conduction band states give a minor contribution to transport. More importantly, trivial bulk valence band holes come into play close to the charge neutrality point. Further in p-regime, the strong applied gate voltage leads to the formation of two-dimensional, massive hole states at the HgTe surface. The interplay of different states gives rise to rich physics: Top gate-back gate maps revealed that an anticrossing of Landau levels from the two topological surface states occurs at equal filling. A possible explanation for this effect is a weak hybridization of the surface states; however, future studies need to further clarify this point. Furthermore, the superposition of n-type topological and p-type trivial surface states leads to an intriguing Landau level dispersion. The good quantization of the Hall conductance in this situation indicates that the counterpropagating edge states interact with each other. The nature of this interaction will be the topic of further research. Part III of the thesis is focused on HgTe microstructures. These "channel samples" have a typical width of 0.5 to 4µm and a typical length of 5 to 80µm. The quality of these devices benefits particularly from the improved lithographic processes. As a result, the impurity mean free path of the topological surface state electrons is on the order of the device width and transport becomes semiballistic. This was verified by measuring the channel resistance in small magnetic fields in n-regime. The deflection of carriers towards the dissipative channel walls results in a pronounced peak in the magnetoresistance, which scales in a predictable manner with the channel width. To investigate transport effects due to mutual scattering of charge carriers, the differential resistance of channel samples was measured as a function of carrier temperature. Selective heating of the charge carriers - but not the lattice - was achieved by passing a heating current through the channel. Increasing the carrier temperature has two pronounced effects when the Fermi level is situated in proximity to the bulk valence band maximum where the density of states is large. First, when both topological surface state electrons and bulk holes are present, electron-hole scattering leads to a pronounced increase in resistance with increasing carrier temperature. Second, a thermally induced increase of the electron and hole carrier densities reduces the resistance again at higher temperatures. A model considering these two effects was developed, which can well reproduce the experimental results. Current heating experiments in zero-gap HgTe quantum wells and compressively strained HgTe layers are consistent with this model. These observations raise the question as to how electron-hole scattering may affect other transport properties of HgTe-based three-dimensional topological insulators, which is briefly discussed in the outlook.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Harder2022, author = {Harder, Tristan H.}, title = {Topological Modes and Flatbands in Microcavity Exciton-Polariton Lattices}, doi = {10.25972/OPUS-25900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259008}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented. At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed. In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices. Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection. Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators.}, subject = {Exziton-Polariton}, language = {en} } @phdthesis{Gruene2022, author = {Gr{\"u}ne, Jeannine}, title = {Spin States and Efficiency-Limiting Pathways in Optoelectronic Materials and Devices}, doi = {10.25972/OPUS-29340}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis addresses the identification and characterization of spin states in optoelectronic materials and devices using multiple spin-sensitive techniques. For this purpose, a systematic study focussing on triplet states as well as associated loss pathways and excited state kinetics was carried out. The research was based on comparing a range of donor:acceptor systems, reaching from organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) to organic photovoltaics (OPV) employing fullerene and multiple non-fullerene acceptors (NFAs). By developing new strategies, e.g., appropriate modeling, new magnetic resonance techniques and experimental frameworks, the influence of spin states in the fundamental processes of organic semiconductors has been investigated. Thereby, the combination of techniques based on the principle of electron paramagnetic resonance (EPR), in particular transient EPR (trEPR) and optically detected magnetic resonance (ODMR), with all-optical methods, such as transient electroluminescence (trEL) and transient absorption (TA), has been employed. As a result, excited spin states, especially molecular and charge transfer (CT) states, were investigated in terms of kinetic behavior and associated pathways, which revealed a significant impact of triplet states on efficiency-limiting processes in both optoelectronic applications.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Kissner2022, author = {Kißner, Katharina}, title = {Manipulation of electronic properties in strongly correlated Cerium-based surface alloys}, doi = {10.25972/OPUS-27306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273067}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Photoelectron spectroscopy proves as a versatile tool for investigating various aspects of the electronic structure in strongly correlated electron systems. Influencing the manifestation of strong correlation in Ce-based surface alloys is the main task of this work. It is shown, that the manifestation of the Kondo ground state is influenced by a multitude of parameters such as the choice of the metal binding partner in binary Ce compounds, the surface alloy layer thickness and accompanying variations in the lattice structure as well as the interfaces to substrate or vacuum. Gaining access to these parameters allows to directly influence essential state variables, such as the f level occupancy nf or the Kondo temperature TK. The center of this work are the intermetallic thin films of CePt5/Pt(111) and CeAgx/Ag(111). By utilizing different excitation energies, photoemission spectroscopy provides access to characteristic features of Kondo physics in the valence band, such as the Kondo resonance and its spin-orbit partner at the Fermi level, as well as the multiplet structure of the Ce 3d core levels. In this work both approaches are applied to CePt5/Pt(111) to determine nf and TK for a variety of surface alloy layer thicknesses. A temperature dependent study of the Ce 3d core levels allows to determine the systems TK for the different layer thicknesses. This leads to TK ≈200-270K in the thin layer thickness regime and TK >280K for larger layer thicknesses. These results are confirmed by fitting the Ce 3d multiplet based on the Gunnarsson-Sch{\"o}nhammer formalism for core level spectroscopy and additionally by valence band photoemission spectra of the respective Kondo resonances. The influence of varying layer thickness on the manifestation of strong correlation is subsequently studied for the surface alloy CeAgx/Ag(111). Furthermore, the heavy element Bi is added, to investigate the effects of strong spin-orbit coupling on the electronic structure of the surface alloy.}, subject = {Korrelation}, language = {en} } @phdthesis{Suchomel2022, author = {Suchomel, Holger Maximilian}, title = {Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren}, doi = {10.25972/OPUS-27163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavit{\"a}tsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten f{\"u}r die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten. Als erstes wird die Implementierung einer elektrisch angeregten, oberfl{\"a}chenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Daf{\"u}r wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus bel{\"a}uft sich auf Q ~ 16.000, w{\"a}hrend die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensit{\"a}t, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu h{\"o}heren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Koh{\"a}renzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform f{\"u}r die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugeh{\"o}rige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearit{\"a}t in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der H{\"o}he des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugeh{\"o}rige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch gesch{\"u}tzten Defektzustandes gezeigt. Dazu geh{\"o}rt vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandl{\"u}cke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren l{\"a}sst. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erh{\"o}hten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems {\"u}ber die GrossPitaevskii-Gleichung beschrieben. Zus{\"a}tzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abh{\"a}ngigkeit von der Ladungstr{\"a}gerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zust{\"a}nde innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den r{\"a}umlichen Freiheitsgrad der PolaritonZust{\"a}nde zur{\"u}ckgef{\"u}hrt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Gottscholl2022, author = {Gottscholl, Andreas Paul}, title = {Optical Accessible Spin Defects in Hexagonal Boron Nitride: Identification, Control and Application of the Negatively Charged Boron Vacancy VB-}, doi = {10.25972/OPUS-27432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this work, a bridge was built between the so-far separate fields of spin defects and 2D systems: for the first time, an optically addressable spin defect (VB-) in a van der Waals material (hexagonal boron nitride) was identified and exploited. The results of this thesis are divided into three topics as follows: 1.) Identification of VB-: In the scope of this chapter, the defect ,the negatively charged boron vacancy VB-, is identified and characterized. An initialization and readout of the spin state can be demonstrated optically at room temperature and its spin Hamiltonian contributions can be quantified. 2.) Coherent Control of VB-: A coherent control is required for the defect to be utilized for quantum applications, which}, subject = {Bornitrid}, language = {en} } @phdthesis{Betzold2022, author = {Betzold, Simon}, title = {Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisph{\"a}rischen Mikrokavit{\"a}ten mit eingebetteten organischen Halbleitern}, doi = {10.25972/OPUS-26665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266654}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Kavit{\"a}ts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavit{\"a}tsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits f{\"u}r die Grundlagenforschung, andererseits auch f{\"u}r die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand {\"u}ber, was zur Emission von laserartigem Licht f{\"u}hrt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorst{\"a}rken auch hohe Bindungsenergien aufweisen. Deshalb ist es m{\"o}glich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen {\"a}ußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte r{\"a}umliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit besch{\"a}ftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisph{\"a}rischen Mikrokavit{\"a}ten, in die organische Halbleiter eingebettet sind.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Youssef2022, author = {Youssef, Almoatazbellah}, title = {Fabrication of Micro-Engineered Scaffolds for Biomedical Application}, doi = {10.25972/OPUS-23545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients' own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW.}, language = {en} } @phdthesis{Weissenseel2022, author = {Weißenseel, Sebastian G{\"u}nter}, title = {Spin-Spin Interactions and their Impact on Organic Light-Emitting Devices}, doi = {10.25972/OPUS-25745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This work investigates the correlations between spin states and the light emission properties of organic light-emitting diodes (OLEDs), which are based on the principle of thermally activated delayed fluorescence. The spin-spin interactions responsible for this mechanism are investigated in this work using methods based on spin-sensitive electron paramagnetic resonance (EPR). In particular, this method has been applied to electrically driven OLEDs. The magnetic resonance has been detected by electroluminescence, giving this method its name: electroluminescence detected magnetic resonance (ELDMR). Initial investigations on a novel deep blue TADF emitter were performed. Furthermore, the ELDMR method was used in this work to directly detect the spin states in the OLED. These measurements were further underlined by time-resolved experiments such as transient electro- and photoluminescence.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Heinrich2022, author = {Heinrich, Robert}, title = {Multi-species gas detection based on an external-cavity quantum cascade laser spectrometer in the mid-infrared fingerprint region}, doi = {10.25972/OPUS-26864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Laser spectroscopic gas sensing has been applied for decades for several applications as atmospheric monitoring, industrial combustion gas analysis or fundamental research. The availability of new laser sources in the mid-infrared opens the spectral fingerprint range to the technology where multiple molecules possess their fundamental ro-vibrational absorption features that allow very sensitive detection and accurate discrimination of the species. The increasing maturity of quantum cascade lasers that cover this highly interesting spectral range motivated this research to gain fundamental knowledge about the spectra of hydrocarbon gases in pure composition and in complex mixtures as they occur in the petro-chemical industry. The long-term target of developing accurate and fast hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in this industry. This thesis aims to contribute to a higher accuracy and more comprehensive understanding of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet unavailable high resolution and high accuracy reference spectra of the respective gases, the investigation of their spectral behavior in mixtures due to collisional broadening of their transitions and the verification of the feasibility to quantitatively discriminate the spectra when several overlapping species are simultaneously measured in gas mixtures. To achieve this knowledge a new laboratory environment was planned and built up to allow for the supply of the individual gases and their arbitrary mixing. The main element was the development of a broadly tunable external-cavity quantum cascade laser based spectrometer to record the required spectra. This also included the development of a new measurement method to obtain highly resolved and nearly gap-less spectral coverage as well as a sophisticated signal post-processing that was crucial to achieve the high accuracy of the measurements. The spectroscopic setup was used for a thorough investigation of the spectra of the first seven alkanes as of their mixtures. Measurements were realized that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4 for long-time averaging of the acquired spectra. These spectral measurements accomplish a quality that compares to state-of-the art spectral databases and revealed so far undocumented details of several of the investigated gases that have not been measured with this high resolution before at the chosen measurement conditions. The results demonstrate the first laser spectroscopic discrimination of a seven component gas mixture with absolute accuracies below 0.5 vol.\% in the mid-infrared provided that a sufficiently broad spectral range is covered in the measurements. Remaining challenges for obtaining improved spectral models of the gases and limitations of the measurement accuracy and technology are discussed.}, subject = {Quantenkaskadenlaser}, language = {en} } @phdthesis{Hajer2022, author = {Hajer, Jan}, title = {Mercury Telluride Nanowires for Topological Quantum Transport}, doi = {10.25972/OPUS-29322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293222}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Novel appraches to the molecular beam epitaxy of core-shell nanowires in the group II telluride material system were explored in this work. Significant advances in growth spurred the development of a flexible and reliable platform for a charge transport characterization of the topological insulator HgTe in a tubular nanowire geometry. The transport results presented provide an important basis for the design of future studies that strive for the experimental realization of topological charge transport in the quantum wire limit.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Kasper2021, author = {Kasper, Christian Andreas}, title = {Engineering of Highly Coherent Silicon Vacancy Defects in Silicon Carbide}, doi = {10.25972/OPUS-23779}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In this work the creation of silicon vacancy spin defects in silicon carbide with predictable properties is demonstrated. Neutron and electron irradiation was used to create silicon vacancy ensembles and proton beam writing to create isolated vacancies at a desired position. The coherence properties of the created silicon vacancies as a function of the emitter density were investigated and a power-law function established. Sample annealing was implemented to increase the coherence properties of existing silicon vacancies. Further, spectral hole burning was used to implement absolute dc-magnetometry.}, subject = {St{\"o}rstelle}, language = {en} } @phdthesis{Zipf2021, author = {Zipf, Matthias}, title = {Ber{\"u}hrungslose Temperaturmessung an Gasen und keramisch beschichteten Oberfl{\"a}chen bei hohen Temperaturen}, doi = {10.25972/OPUS-24024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Station{\"a}re Gasturbinen k{\"o}nnen von großer Bedeutung f{\"u}r die Verlangsamung des Klima-wandels und bei der Bew{\"a}ltigung der Energiewende sein. F{\"u}r die Weiterentwicklung von Gasturbinen zu h{\"o}heren Betriebstemperaturen und damit einhergehend zu h{\"o}heren Wirkungs-graden werden ber{\"u}hrungslose Messverfahren zur Ermittlung der Oberfl{\"a}chentemperatur von Turbinenschaufeln und der Gastemperatur der heißen Verbrennungsgase w{\"a}hrend des Be-triebs ben{\"o}tigt. Im Rahmen dieser Arbeit werden daher Methoden der ber{\"u}hrungslosen Tem-peraturmessung unter Verwendung von Infrarotstrahlung untersucht. Die ber{\"u}hrungslose Messung der Oberfl{\"a}chentemperatur moderner Turbinenschaufeln muss aufgrund derer infrarot-optischer Oberfl{\"a}cheneigenschaften im Wellenl{\"a}ngenbereich des mitt-leren Infrarots durchgef{\"u}hrt werden, in welchem die Turbinenbrenngase starke Absorptions-banden aufweisen. Zur Entwicklung eines ad{\"a}quaten Strahlungsthermometers f{\"u}r diesen Zweck wurden im Rahmen dieser Arbeit daher durch Ermittlung von Transmissionsspektren von Kohlenstoffdioxid und Wasserdampf bei hohen Temperaturen und Dr{\"u}cken in einer ei-gens hierf{\"u}r konstruierten Heißgas-Messzelle zun{\"a}chst Wellenl{\"a}ngenbereiche identifiziert, in welchen die geplanten Messungen m{\"o}glich sind. Anschließend wurde der Prototyp eines ent-sprechend konfigurierten Strahlungsthermometers im Zuge des Testlaufes einer vollskaligen Gasturbine erfolgreich erprobt. Weiterhin wurden im Rahmen dieser Arbeit zwei m{\"o}gliche Verfahren zur ber{\"u}hrungslosen Gastemperaturmessung untersucht. Das erste untersuchte Verfahren setzt ebenfalls auf Strah-lungsthermometrie. Dieses Verfahren sieht vor, aufgrund der Temperaturabh{\"a}ngigkeit des spektralen Transmissionsgrades in den Randbereichen von ges{\"a}ttigten Absorptionsbanden von Gasen aus der in diesen Bereichen transmittierten spektralen Strahldichte auf die Gastempera-tur zu schließen. Im Rahmen dieser Arbeit wurden Voruntersuchungen f{\"u}r dieses Tempera-turmessverfahren durchgef{\"u}hrt. So konnten auf der Grundlage von experimentell ermittelten Transmissionsspektren von Kohlenstoffdioxid bei Dr{\"u}cken zwischen 5 kPa und 600 kPa und Gastemperaturen zwischen Raumtemperatur und 1073 K f{\"u}r das geplante Verfahren nutzbare Wellenl{\"a}ngenintervalle insbesondere im Bereich der Kohlenstoffdioxid-Bande bei 4,26 µm identifiziert werden. Das zweite im Rahmen dieser Arbeit untersuchte Verfahren zur ber{\"u}hrungslosen Gastem-peraturmessung basiert auf der Temperaturabh{\"a}ngigkeit der Wellenl{\"a}ngenposition der Trans-missionsminima der Absorptionsbanden von infrarot-aktiven Gasen. Im Hinblick darauf wur-de dieses Ph{\"a}nomen anhand von experimentell bestimmten hochaufgel{\"o}sten Transmissions-spektren von Kohlenstoffdioxid {\"u}berpr{\"u}ft. Weiterhin wurden m{\"o}gliche Wellenl{\"a}ngenbereiche identifiziert und hinsichtlich ihrer Eignung f{\"u}r das geplante Verfahren charakterisiert. Als am vielversprechendsten erwiesen sich hierbei Teilbanden in den Bereichen um 2,7 µm und um 9,2 µm. Unter Beimischung von Stickstoff mit Partialdr{\"u}cken von bis zu 390 kPa erwies sich zudem auch die Bande bei 4,26 µm als geeignet. Die im Rahmen dieser Arbeit experimentell ermittelten Transmissionsspektren konnten dar-{\"u}ber hinaus schließlich durch Vergleich mit entsprechenden HITRAN-Simulationen verifiziert werden.}, subject = {Pyrometrie}, language = {de} } @phdthesis{Hammer2021, author = {Hammer, Sebastian Tobias}, title = {Influence of Crystal Structure on Excited States in Crystalline Organic Semiconductors}, doi = {10.25972/OPUS-24401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244019}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis focused on the influence of the underlying crystal structure and hence, of the mutual molecular orientation, on the excited states in ordered molecular aggregates. For this purpose, two model systems have been investigated. In the prototypical donor-acceptor complex pentacene-perfluoropentacene (PEN-PFP) the optical accessibility of the charge transfer state and the possibility to fabricate highly defined interfaces by means of single crystal templates enabled a deep understanding of the spatial anisotropy of the charge transfer state formation. Transferring the obtained insights to the design of prototypical donor-acceptor devices, the importance of interface control to minimize the occurrence of charge transfer traps and thereby, to improve the device performance, could be demonstrated. The use of zinc phthalocyanine (ZnPc) allowed for the examination of the influence of molecular packing on the excited electronic states without a change in molecular species by virtue of its inherent polymorphism. Combining structural investigations, optical absorption and emission spectroscopy, as well as Franck-Condon modeling of emission spectra revealed the nature of the optical excited state emission in relation to the structural \(\alpha \) and \(\beta \) phase over a wide temperature range from 4 K to 300 K. As a results, the phase transition kinetics of the first order \(\alpha \rightarrow \beta\) phase transition were characterized in depth and applied to the fabrication of prototypical dual luminescent OLEDs.}, subject = {Organischer Halbleiter}, language = {en} } @phdthesis{EliasdosSantos2021, author = {Elias dos Santos, Graciely}, title = {Spin-Orbit Torques and Galvanomagnetic Effects Generated by the 3D Topological Insulator HgTe}, doi = {10.25972/OPUS-24797}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247971}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In meiner Dissertation besch{\"a}ftigte ich mich mit der Frage, ob der 3D topologische Isolator Quecksilbertellurid (3D TI HgTe) ein geeignetes Material f{\"u}r Spintronik-Anwendungen ist. Wir untersuchten Spin-Bahn-Drehmomente, die auf Elektronen beim Tunneln zwischen HgTe und einem angrenzenden Ferromagneten (Permalloy) einwirken. Zun{\"a}chst setzten wir die Methode der Ferromagnetresonanz (SOT-FMR) f{\"u}r diese Untersuchungen ein. Im ersten Teil der Dissertation werden die Leser in die mathematische Beschreibung von Spin- Bahn-Drehmomenten in einem Hybridsystem bestehend aus topologischem Isolator (TI) und Ferromagnet (FM) eingef{\"u}hrt. Des Weiteren werden die Probenherstellung und der Messaufbau f{\"u}r SOT-FMR Messungen besprochen. Unsere SOT-FMR Messungen ergaben, dass bei tiefen Temperaturen (T = 4.2 K) die Normalkomponente (bezogen auf der TI-Oberfl{\"a}che) des Drehmoments groß war. Bei Raumtemperatur konnten im Signal beide Komponenten (parallel und normal zur TI-Oberfl{\"a}che) beobachtet werden. Aus der Symmetrie der Mixing-Spannung (Abbildungen 3.14 und 3.15) schlossen wir, dass 3D TI HgTe ein Spin-Bahn-Drehmoment auf das Elektronensystem des Permalloys {\"u}bertr{\"a}gt. Unsere Untersuchungen zeigten dar{\"u}ber hinaus, dass die Effizienz dieser {\"U}bertragung mit der anderer vorhandener topologischen Isolatoren vergleichbar ist (siehe Abb. 3.17). Abschließend wurden parasit{\"a}re Effekte bei der Absch{\"a}tzung des Spin-Bahn-Drehmoments bzw. andere Interpretationen des Messsignals und seiner Komponenten (z.B., Thermospannungen) ausf{\"u}hrlich diskutiert. Obwohl die hier gezeigten Ergebnisse vermehrt darauf hinweisen, dass der 3D TI HgTe m{\"o}glicherweise effizient f{\"u}r die Anwendung von Spin-Drehmomenten in angrezenden Ferromagneten ist [1], wird dem Leser weiderholt klargemacht, dass parasit{\"a}re Effekte eventuelle das korrekte Schreiben und Lesen der Information in Ferromagneten verunreignigt. Diese sollten auch bei der Interpretation von publizierten Resultaten besonders hohen Spin-Bahn-Drehmoment{\"u}bertragungen in der Literatur ber{\"u}cksichtigt werden [1-3]. Die Nachteile der SOT-FMR-Messmethode f{\"u}hrten zu einerWeiterentwicklung unseres Messkonzepts, bei dem der Ferromagnet durch eine Spin-Valve-Struktur ersetzt wurde. In dieser Messanordnung ist der Stromfluss durch den 3D TI im Gegensatz zu den vorangegangenen Messungen bekannt und die Widerstands{\"a}nderung der Spin-Valve-Struktur kann durch den GMR-Effekt ausgelesen werden. Die Ausrichtung der Magnetisierung des Ferromagneten in den SOT-FMR-Experimenten erforderte es, ein magnetisches Feld von bis zu 300 mT parallel zur TI-Oberfl{\"a}che anzulegen. Motiviert durch diesen Umstand, untersuchten wir den Einfluss eines parallelen Magnetfelds auf den Magnetowiderstand in 3D TI HgTe. Die {\"u}berraschenden Resultate dieser Messungen werden im zweiten Teil der Dissertation beschrieben. Obwohl nichtmagnetisches Quecksilbertellurid untersucht wurde, oszillierte der transversale Magnetowiderstand (Rxy) mit dem Winkel � zwischen der Magnetfeldrichtung (parallel zur Oberfl{\"a}che) und der elektrischen Stromflussrichtung im topologischen Isolator. Dieser Effekt ist eine typische Eigenschaft von ferromagnetischen Materialien und wird planarer Hall-Effekt (PHE) genannt[4, 5]. Magnetowiderstands- (MR-)Oszillationen wurden ebenfalls sowohl im L{\"a}ngswiderstand (Rxx) und im transversalen Widerstand (Rxy) {\"u}ber einen weiten Bereich von magnetischen Feldst{\"a}rken und Ladungstr{\"a}gerdichten des topologischen Isolators beobachtet. Der PHE wurde bereits zuvor in einem anderen TI-Material (Bi2-xSbxTe3) beschrieben [6]. Als physikalischer Mechanismus wurde von den Autoren Elektronenstreuung an magnetisch polarisierten Streuzentren vorgeschlagen. Wir diskutierten sowohl diesen Erkl{\"a}rungsansatz als auch andere Theorievorschl{\"a}ge in der Literatur [7, 8] kritisch. In dieser Doktorarbeit haben wir versucht, der PHE des 3D TI HgTe durch die Asymmetrie in der Bandstruktur dieses Materials zu erkl{\"a}ren. In k.p Bandstrukturrechnungen mit einer 6-Orbital-Basis zeigten wir, dass das Zwischenspiel von Rashba- und Dresselhaus-Spin-Bahn- Wechselwirkung mit dem magnetischen Feld parallel zur TI-Oberfl{\"a}che zu einer Verformung der Fermikontur des Valenzbands von 3D TI-HgTe f{\"u}hrt, welche ihrerseits eine Anisotropie des Leitf{\"a}higkeit bedingt. Die ben{\"o}tigten Magnetfeldst{\"a}rken in diesem Modell waren mit bis zu 40 T jedoch etwa eine Gr{\"o}ßenordnung gr{\"o}ßer als jene in unseren Experimenten. Des Weiteren lieferte eine direkte Berechnung der Zustandsdichten f{\"u}r Bin k I und Bin ? I bisher keine klaren Resultate. Die komplizierte Abh{\"a}ngigkeit der Rashba-Spin-Bahn-Kopplung f{\"u}r p-leitendes HgTe [9] machte es außerdem schwierig, diesen Term in die Bandstrukturrechnung zu inkludieren. Trotz umfangreicher Bem{\"u}hungen, den Ursprung der galvanomagnetischen Effekte im 3D TI HgTe zu verstehen, konnte in dieser Arbeit der Mechanismus des PHE und der MR-Oszillationen nicht eindeutig bestimmt werden. Es gelang jedoch, einige aus der Literatur bekannte Theorien f{\"u}r den PHE und die MR-Oszillationseffekte in topologischen Isolatoren auszuschließen. Die Herausforderung, eine vollst{\"a}ndige theoretische Beschreibung zu entwickeln, die allen experimentellen Aspekten (PHE, Gatespannungsabh{\"a}ngigkeit und MR-Oszillationen) gerecht wird, bleibt weiter bestehen. Abschließend m{\"o}chte die Autorin ihre Hoffnung ausdr{\"u}cken, den Lesern die Komplexit{\"a}t der Fragestellung n{\"a}her gebracht zu haben und sie in die Kunst elektrischer Messungen an topologischen Isolatoren bei angelegtem parallelem Magnetfeld initiiert zu haben.}, language = {en} } @phdthesis{Ullherr2021, author = {Ullherr, Maximilian}, title = {Optimization of Image Quality in High-Resolution X-Ray Imaging}, doi = {10.25972/OPUS-23117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The SNR spectra model and measurement method developed in this work yield reliable application-specific optima for image quality. This optimization can either be used to understand image quality, find out how to build a good imaging device or to (automatically) optimize the parameters of an existing setup. SNR spectra are here defined as a fraction of power spectra instead of a product of device properties. In combination with the newly developed measurement method for this definition, a close correspondence be- tween theory and measurement is achieved. Prior approaches suffer from a focus on theoretical definitions without fully considering if the defined quantities can be measured correctly. Additionally, discrepancies between assumptions and reality are common. The new approach is more reliable and complete, but also more difficult to evaluate and interpret. The signal power spectrum in the numerator of this fraction allows to model the image quality of different contrast mechanisms that are used in high-resolution x-ray imaging. Superposition equations derived for signal and noise enable understanding how polychromaticity (or superposition in general) affects the image quality. For the concept of detection energy weighting, a quantitative model for how it affects im- age quality was found. It was shown that—depending on sample properties—not detecting x-ray photons can increase image quality. For optimal computational energy weighting, more general formula for the optimal weight was found. In addition to the signal strength, it includes noise and modulation transfer. The novel method for measuring SNR spectra makes it possible to experimentally optimize image quality for different contrast mechanisms. This method uses one simple measurement to obtain a measure for im- age quality for a specific experimental setup. Comparable measurement methods typically require at least three more complex measurements, where the combination may then give a false result. SNR spectra measurements can be used to: • Test theoretical predictions about image quality optima. • Optimize image quality for a specific application. • Find new mechanisms to improve image quality. The last item reveals an important limitation of x- ray imaging in general: The achievable image quality is limited by the amount of x-ray photons interacting with the sample, not by the amount incident per detector area (see section 3.6). If the rest of the imaging geometry is fixed, moving the detector only changes the field of view, not the image quality. A practical consequence is that moving the sample closer to the x-ray source increases image quality quadratically. The results of a SNR spectra measurement represent the image quality only on a relative scale, but very reliable. This relative scale is sufficient for an optimization problem. Physical effects are often already clearly identifiable by the shape of the functional relationship between input parameter and measurement result. SNR spectra as a quantity are not well suited for standardization, but instead allow a reliable optimization. Not satisfying the requirements of standardization allows to use methods which have other advantages. In this case, the SNR spectra method describes the image quality for a specific application. Consequently, additional physical effects can be taken into account. Additionally, the measurement method can be used to automate the setting of optimal machine parameters. The newly proposed image quality measure detection effectiveness is better suited for standardization or setup comparison. This quantity is very similar to measures from other publications (e.g. CNR(u)), when interpreted monochromatically. Polychromatic effects can only be modeled fully by the DE(u). The measurement processes of both are different and the DE(u) is fundamentally more reliable. Information technology and digital data processing make it possible to determine SNR spectra from a mea- sured image series. This measurement process was designed from the ground up to use these technical capabilities. Often, information technology is only used to make processes easier and more exact. Here, the whole measurement method would be infeasible without it. As this example shows, using the capabilities of digital data processing much more extensively opens many new possibilities. Information technology can be used to extract information from measured data in ways that analog data processing simply cannot. The original purpose of the SNR spectra optimization theory and methods was to optimize high resolution x-ray imaging only. During the course of this work, it has become clear that some of the results of this work affect x-ray imaging in general. In the future, these results could be applied to MI and NDT x-ray imaging. Future work on the same topic will also need to consider the relationship between SNR spectra or DE(u) and sufficient image quality.This question is about the minimal image quality required for a specific measurement task.}, subject = {Bildqualit{\"a}t}, language = {en} }