@phdthesis{Razinskas2018, author = {Razinskas, Gary}, title = {Functional plasmonic nanocircuitry}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this work, functional plasmonic nanocircuitry is examined as a key of revolutionizing state-of-the-art electronic and photonic circuitry in terms of integration density and transmission bandwidth. In this context, numerical simulations enable the design of dedicated devices, which allow fundamental control of photon flow at the nanometer scale via single or multiple plasmonic eigenmodes. The deterministic synthesis and in situ analysis of these eigenmodes is demonstrated and constitutes an indispensable requirement for the practical use of any device. By exploiting the existence of multiple eigenmodes and coherence - both not accessible in classical electronics - a nanoscale directional coupler for the ultrafast spatial and spatiotemporal coherent control of plasmon propagation is conceived. Future widespread application of plasmonic nanocircuitry in quantum technologies is boosted by the promising demonstrations of spin-optical and quantum plasmonic nanocircuitry.}, subject = {Nanooptik}, language = {en} } @phdthesis{Rewitz2014, author = {Rewitz, Christian}, title = {Far-Field Characterization and Control of Propagating Ultrashort Optical Near Fields}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work, femtosecond laser pulses are used to launch optical excitations on different nanostructures. The excitations are confined below the diffraction limit and propagate along the nanostructures. Fundamental properties of these ultrashort optical near fields are determined by characterizing the far-field emission after propagation with a setup developed for this task. Furthermore, control of the nanooptical excitations' spatial and temporal evolution is demonstrated for a designed nanostructure.}, subject = {Nahfeldoptik}, language = {en} }