@phdthesis{Pappert2007, author = {Pappert, Katrin}, title = {Anisotropies in (Ga,Mn)As - Measurement, Control and Application in Novel Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23370}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Ferromagnetic semiconductors (FS) promise the integration of magnetic memory functionalities and semiconductor information processing into the same material system. The prototypical FS (Ga,Mn)As has become the focus of semiconductor spintronics research over the past years. The spin-orbit mediated coupling of magnetic and semiconductor properties in this material gives rise to many novel transport-related phenomena which can be harnessed for device applications. In this thesis we address challenges faced in the development of an all-semiconductor memory architecture. A starting point for information storage in FS is the knowledge of their detailed magnetic anisotropy. The first part of this thesis concentrates on the investigation of the magnetization behaviour in compressively strained (Ga,Mn)As by electrical means. The angle between current and magnetization is monitored in magnetoresistance(MR) measurements along many in-plane directions using the Anisotropic MR(AMR) or Planar Hall effect(PHE). It is shown, that a full angular set of such measurements displayed in a color coded resistance polar plot can be used to identify and quantitatively determine the symmetry components of the magnetic anisotropy of (Ga,Mn)As at 4 K. We compile such "anisotropy fingerprints" for many (Ga,Mn)As layers from Wuerzburg and other laboratories and find the presence of three symmetry terms in all layers. The biaxial anisotropy term with easy axes along the [100] and [010] crystal direction dominates the magnetic behaviour. An additional uniaxial term with an anisotropy constant of ~10\% of the biaxial one has its easy axis along either of the two <110> directions. A second contribution of uniaxial symmetry with easy axis along one of the biaxial easy axes has a strength of only ~1\% of the biaxial anisotropy and is therefore barely visible in standard SQUID measurements. An all-electrical writing scheme would be desirable for commercialization. We report on a current assisted magnetization manipulation experiment in a lateral (Ga,Mn)As nanodevice at 4 K (far below Tc). Reading out the large resistance signal from DW that are confined in nanoconstrictions, we demonstrate the current assisted magnetization switching of a small central island through a hole mediated spin transfer from the adjacent leads. One possible non-perturbative read-out scheme for FS memory devices could be the recently discovered Tunneling Anisotropic MagnetoResistance (TAMR) effect. Here we clarify the origin of the large amplification of the TAMR amplitude in a device with an epitaxial GaAs tunnel barrier at low temperatures. We prove with the help of density of states spectroscopy that a thin (Ga,Mn)As injector layer undergoes a metal insulator transition upon a change of the magnetization direction in the layer plane. The two states can be distinguished by their typical power law behaviour in the measured conductance vs voltage tunneling spectra. While all hereto demonstrated (Ga,Mn)As devices inherited their anisotropic magnetic properties from their parent FS layer, more sophisticated FS architectures will require locally defined FS elements of different magnetic anisotropy on the same wafer. We show that shape anisotropy is not applicable in FS because of their low volume magnetization. We present a method to lithographically engineer the magnetic anisotropy of (Ga,Mn)As by submicron patterning. Anisotropic strain relaxation in submicron bar structures (nanobars) and the related deformation of the crystal lattice introduce a new uniaxial anisotropy term in the energy equation. We demonstrate by both SQUID and transport investigations that this lithographically induced uniaxial anisotropy overwrites the intrinsic biaxial anisotropy at all temperatures up to Tc. The final section of the thesis combines all the above into a novel device scheme. We use anisotropy engineering to fabricate two orthogonal, magnetically uniaxial, nanobars which are electrically connected through a constriction. We find that the constriction resistance depends on the relative orientation of the nanobar magnetizations, which can be written by an in-plane magnetic field. This effect can be explained with the AMR effect in connection with the field line patterns in the respective states. The device offers a novel non-volatile information storage scheme and a corresponding non-perturbative read-out method. The read out signal is shown to increase drastically in samples with partly depleted constriction region. This could be shown to originate in a magnetization direction driven metal insulator transition of the material in the constriction region.}, subject = {Anisotropie}, language = {en} } @phdthesis{Schliemann2004, author = {Schliemann, Andreas Ulrich}, title = {Untersuchung von miniaturisierten GaAs/AlGaAs Feldeffekttransistoren und GaAs/InGaAs/AlGaAs Flash-Speichern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Rahmen dieser Arbeit wurden elektronische Bauelemente wie Feldeffekttransistoren, elektronische Speicherelemente sowie resonante Tunneldioden hinsichtlich neuartiger Transporteigenschaften untersucht, die ihren Ursprung in der Miniaturisierung mit Ausdehnungen kleiner als charakteristische Streul{\"a}ngen haben. Die Motivation der vorliegenden Arbeit lag darin, die Physik nanoelektronischer Bauelemente durch einen neuen Computercode: NANOTCAD nicht nur qualitativ sondern auch quantitativ beschreiben zu k{\"o}nnen. Der besondere Schwerpunkt der Transportuntersuchungen lag im nicht-linearen Transportbereich f{\"u}r Vorw{\"a}rtsspannungen, bei denen die Differenz der elektrochemischen Potentiale im aktiven Bereich der Bauelemente bei Weitem gr{\"o}ßer als die thermische Energie der Ladungstr{\"a}ger ist, da nur im nicht-linearen Transportbereich die f{\"u}r eine Anwendung elektronischer Bauelemente notwendige Gleichrichtung und Verst{\"a}rkung auftreten kann. Hierzu war es notwendig, eine detaillierte Charakterisierung der Bauelemente durchzuf{\"u}hren, damit m{\"o}glichst viele Parameter zur genauen Modellierung zur Verf{\"u}gung standen. Als Ausgangsmaterial wurden modulationsdotierte GaAs/AlGaAs Heterostrukturen gew{\"a}hlt, da sie in hervorragender struktureller G{\"u}te mit Hilfe der Molekularstrahllithographie am Lehrstuhl f{\"u}r Technische Physik mit angegliedertem Mikrostrukturlabor hergestellt werden k{\"o}nnen. Im Rahmen dieser Arbeit wurde zun{\"a}chst ein Verfahren zur Bestimmung der Oberfl{\"a}chenenergie entwickelt und durchgef{\"u}hrt, das darauf beruht, die Elektronendichte eines nahe der Oberfl{\"a}che befindlichen Elektronengases in Abh{\"a}ngigkeit unterschiedlicher Oberfl{\"a}chenschichtdicken zu bestimmen. Es zeigte sich, dass die so bestimmte Oberfl{\"a}chenenergie, einen {\"a}ußerst empfindlichen Parameter zur Beschreibung miniaturisierter Bauelemente darstellt. Um die miniaturisierte Bauelemente zu realisieren, kamen Herstellungsverfahren der Nanostrukturtechnik wie Elektronenstrahllithographie und diverse {\"A}tztechniken zum Einsatz. Durch Elektronmikroskopie wurde die Geometrie der nanostrukturierten Bauelemente genau charakterisiert. Transportmessungen wurden durchgef{\"u}hrt, um die Eingangs- und Ausgangskennlinien zu bestimmen, wobei die Temperatur zwischen 1K und Raumtemperatur variiert wurde. Die temperaturabh{\"a}ngigen Analysen erlaubten es, die Rolle inelastischer Streuereignisse im Bereich des quasi-ballistischen Transports zu analysieren. Die Ergebnisse dieser Arbeit wurden dazu verwendet, um die NANOTCAD Simulationswerkzeuge soweit zu optimieren, dass quantitative Beschreibungen von stark miniaturisierten, elektronischen Bauelementen durch einen iterativen L{\"o}sungsalgorithmus der Schr{\"o}dingergleichung und der Poissongleichung in drei Raumdimensionen m{\"o}glich sind. Zu Beginn der Arbeit wurden auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen eine Vielzahl von Quantenpunktkontakten, die durch Verarmung eines zweidimensionalen Elektronengases durch spitz zulaufende Elektrodenstrukturen realisiert wurden, untersucht. Variationen der Splitgate-Geometrien wurden statistisch erfasst und mit NanoTCADSimulationen verglichen. Es konnte ein hervorragende {\"U}bereinstimmung in der Schwellwertcharakteristik von Quantenpunktkontakten und Quantenpunkten gefunden werden, die auf der genauen Beschreibung der Oberfl{\"a}chenzust{\"a}nde und der Erfassung der realen Geometrie beruhen. Ausgehend von diesen Grundcharakterisierungen nanoelektronischer Bauelemente wurden 3 Klassen von Bauelementen auf der Basis des GaAs/AlGaAs Halbleitersystems detailliert analysiert.}, subject = {Galliumarsenid}, language = {de} }