@article{VazquezRodriguezVilarKachleretal.2020, author = {Vazquez-Rodriguez, Saleta and Vilar, Santiago and Kachler, Sonja and Klotz, Karl-Norbert and Uriarte, Eugenio and Borges, Fernanda and Matos, Maria Jo{\~a}o}, title = {Adenosine receptor ligands: coumarin-chalcone hybrids as modulating agents on the activity of hARs}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {18}, issn = {1420-3049}, doi = {10.3390/molecules25184306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213165}, year = {2020}, abstract = {Adenosine receptors (ARs) play an important role in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, epilepsy and schizophrenia. The different subtypes of ARs and the knowledge on their densities and status are important for understanding the mechanisms underlying the pathogenesis of diseases and for developing new therapeutics. Looking for new scaffolds for selective AR ligands, coumarin-chalcone hybrids were synthesized (compounds 1-8) and screened in radioligand binding (hA\(_1\), hA\(_{2A}\) and hA\(_3\)) and adenylyl cyclase (hA\(_{2B}\)) assays in order to evaluate their affinity for the four human AR subtypes (hARs). Coumarin-chalcone hybrid has been established as a new scaffold suitable for the development of potent and selective ligands for hA\(_1\) or hA\(_3\) subtypes. In general, hydroxy-substituted hybrids showed some affinity for the hA\(_1\), while the methoxy counterparts were selective for the hA\(_3\). The most potent hA\(_1\) ligand was compound 7 (K\(_i\) = 17.7 µM), whereas compound 4 was the most potent ligand for hA\(_3\) (K\(_i\) = 2.49 µM). In addition, docking studies with hA\(_1\) and hA\(_3\) homology models were established to analyze the structure-function relationships. Results showed that the different residues located on the protein binding pocket could play an important role in ligand selectivity.}, language = {en} } @article{LohseKlotzJakobsetal.1985, author = {Lohse, M. J. and Klotz, Karl-Norbert and Jakobs, K. H. and Schwabe, U.}, title = {Barbiturates are selective antagonists at A\(_1\) adenosine receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60187}, year = {1985}, abstract = {Barbiturates in pharmacologically relevant . concentrations inhibit binding of (R)-\(N^6\)-phenylisopropyl[\(^3\)H]adenosine ([\(^3\)H]PIA) to solubilized A\(_1\) adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. K\(_i\) values are similar to those obtained for membrane-bound receptors and are 31 \(\mu\)M for ( ± )-5-(1 ,3-dimethyl)-5-ethylbarbituric acid [( ± )DMBB] and 89 \(\mu\)M for ( ± )-pentobarbital. Kinetic experiments demoostrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-\(N^6\)-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The Stimulation of adenylate cyclase via A\(_2\) adenosine receptors in membranes from NIE 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. lt is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A\(_1\) adenosine receptor antagonism may convey excitatory properties to barbiturates. Key Words: Adenosine receptors-Barbiturates - Adenylate cyclase-Receptor solubilization-[3H]PIA binding-N1E 115 cells. Lohse M. J. et al. Barbiturates are selective antagonists at A1 adenosine receptors.}, subject = {Toxikologie}, language = {en} }