@article{MaassBentmannSeibeletal.2016, author = {Maaß, Henriette and Bentmann, Hendrik and Seibel, Christoph and Tusche, Christian and Eremeev, Sergey V. and Peixoto, Thiago R.F. and Tereshchenko, Oleg E. and Kokh, Konstantin A. and Chulkov, Evgueni V. and Kirschner, J{\"u}rgen and Reinert, Friedrich}, title = {Spin-texture inversion in the giant Rashba semiconductor BiTeI}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms11621}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173769}, year = {2016}, abstract = {Semiconductors with strong spin-orbit interaction as the underlying mechanism for the generation of spin-polarized electrons are showing potential for applications in spintronic devices. Unveiling the full spin texture in momentum space for such materials and its relation to the microscopic structure of the electronic wave functions is experimentally challenging and yet essential for exploiting spin-orbit effects for spin manipulation. Here we employ a state-of-the-art photoelectron momentum microscope with a multichannel spin filter to directly image the spin texture of the layered polar semiconductor BiTeI within the full two-dimensional momentum plane. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the valence and conduction band electrons in BiTeI have spin textures of opposite chirality and of pronounced orbital dependence beyond the standard Rashba model, the latter giving rise to strong optical selection-rule effects on the photoelectron spin polarization. These observations open avenues for spin-texture manipulation by atomic-layer and charge carrier control in polar semiconductors.}, language = {en} } @article{MotykaDyksikRyczkoetal.2016, author = {Motyka, M. and Dyksik, M. and Ryczko, K. and Weih, R. and Dallner, M. and H{\"o}fling, S. and Kamp, M. and Sęk, G. and Misiewicz, J.}, title = {Type-II quantum wells with tensile-strained GaAsSb layers for interband cascade lasers with tailored valence band mixing}, series = {Applied Physics Letters}, volume = {108}, journal = {Applied Physics Letters}, number = {10}, doi = {10.1063/1.4943193}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189795}, year = {2016}, abstract = {Optical properties of modified type II W-shaped quantum wells have been investigated with the aim to be utilized in interband cascade lasers. The results show that introducing a tensely strained GaAsSb layer, instead of a commonly used compressively strained GaInSb, allows employing the active transition involving valence band states with a significant admixture of the light holes. Theoretical predictions of multiband k.p theory have been experimentally verified by using photoluminescence and polarization dependent photoreflectance measurements. These results open a pathway for practical realization of mid-infrared lasing devices with uncommon polarization properties including, for instance, polarization-independent midinfrared light emitters.}, language = {en} }