@phdthesis{Herok2024, author = {Herok, Christoph}, title = {Quantum Chemical Exploration of Potential Energy Surfaces: Reaction Cycles and Luminescence Phenomena}, doi = {10.25972/OPUS-35218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352185}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This work aims at elucidating chemical processes involving homogeneous catalysis and photo-physical relaxation of excited molecules in the solid state. Furthermore, compounds with supposedly small singlet-triplet gaps and therefore biradicaloid character are investigated with respect to their electro-chemical behavior. The work on hydroboration catalysis via a reduced 9,10-diboraanthracene (DBA) was preformed in collaboration with the Wagner group in Frankfurt, more specifically Dr. Sven Prey, who performed all laboratory experiments. The investigation of delayed luminescence properties in arylboronic esters in their solid state was conducted in collaboration with the Marder group in W{\"u}rzburg. The author of this work took part in the synthesis of the investigated compounds while being supervised by Dr. Zhu Wu. The final project was a collaboration with the group of Anukul Jana from Hyderabad, India who provided the experimental data.}, subject = {Simulation}, language = {en} } @phdthesis{BathePeters2022, author = {Bathe-Peters, Marc}, title = {Spectroscopic approaches for the localization and dynamics of β\(_1\)- and β\(_2\)-adrenergic receptors in cardiomyocytes}, doi = {10.25972/OPUS-25812}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258126}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the heart the β\(_1\)-adrenergic receptor (AR) and the β\(_2\)-AR, two prototypical G protein-coupled receptors (GPCRs), are both activated by the same hormones, namely adrenaline and noradrenaline. Both receptors couple to stimulatory G\(_s\) proteins, mediate an increase in cyclic adenosine monophosphate (cAMP) and influence the contractility and frequency of the heart upon stimulation. However, activation of the β\(_1\)-AR, not the β\(_2\)-AR, lead to other additional effects, such as changes in gene transcription resulting in cardiac hypertrophy, leading to speculations on how distinct effects can arise from receptors coupled to the same downstream signaling pathway. In this thesis the question of whether this distinct behavior may originate from a differential localization of these two receptors in adult cardiomyocytes is addressed. Therefore, fluorescence spectroscopy tools are developed and implemented in order to elucidate the presence and dynamics of these endogenous receptors at the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. This allows the visualization of confined localization and diffusion of the β\(_2\)-AR to the T-tubular network at endogenous expression. In contrast, the β\(_1\)-AR is found diffusing at both the outer plasma membrane and the T-tubules. Upon overexpression of the β\(_2\)-AR in adult transgenic cardiomyocytes, the receptors experience a loss of this compartmentalization and are also found at the cell surface. These data suggest that distinct signaling and functional effects can be controlled by specific cell surface targeting of the receptor subtypes. The tools at the basis of this thesis work are a fluorescent adrenergic antagonist in combination of fluorescence fluctuation spectroscopy to monitor the localization and dynamics of the lowly expressed adrenergic receptors. Along the way to optimizing these approaches, I worked on combining widefield and confocal imaging in one setup, as well as implementing a stable autofocus mechanism using electrically tunable lenses.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Draeger2020, author = {Draeger, Simon}, title = {Rapid Two-Dimensional One-Quantum and Two-Quantum Fluorescence Spectroscopy}, doi = {10.25972/OPUS-19816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198164}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In den letzten zwei Jahrzehnten hat sich die koh{\"a}rente mehrdimensionale Femtosekunden- Spektroskopie zu einem leistungsstarken und vielseitigen Instrument zur Untersuchung der chemischen Dynamik einer Vielzahl von Quantensystemen entwickelt. Die Kombination von transienten Informationen, die der Anrege-Abrage-Spektroskopie entsprechen, mit Informationen zur Kopplung zwischen energetischen Zust{\"a}nden und der Systemumgebung erm{\"o}glicht einen umfassenden Einblick in atomare und molekulare Eigenschaften. Viele experimentelle 2D-Aufbauten verwenden den koh{\"a}renzdetektierten Ansatz, bei dem nichtlineare Systemantworten als koh{\"a}rente elektrische Felder emittiert und r{\"a}umlich getrennt von den Anregungspulsen detektiert werden. Als Alternative zu diesem experimentell anspruchsvollen Ansatz wurde die populationsbasierte 2D-Spektroskopie etabliert. Hier wird die koh{\"a}rente Information in den Phasen einer kollinearen Anregungspulsfolge codiert und aus inkoh{\"a}renten Signalen wie Fluoreszenz {\"u}ber Phase Cycling extrahiert. Grunds{\"a}tzlich kann durch die Verwendung von Fluoreszenz als Observable eine Sensitivit{\"a}t bis zum Einzelmolek{\"u}lniveau erreicht werden. Ziel dieser Arbeit war die Realisierung eines pulsformergest{\"u}tzten vollst{\"a}ndig kollinearen fluoreszenzdetektierten 2D-Aufbaus und die Durchf{\"u}hrung von Proof-of- Principle-Experimenten in der Fl{\"u}ssigphase. Dieser inh{\"a}rent phasenstabile und kompakte Aufbau wurde in Kapitel 3 vorgestellt. Der verwendete Pulsformer erm{\"o}glicht eine Amplituden- und Phasenmodulation von Schuss zu Schuss. Zwei verschiedene Arten von Weißlichtquellen wurden angewendet und hinsichtlich ihrer jeweiligen Vorteile f{\"u}r die 2D-Fluoreszenzspektroskopie bewertet. Eine Vielzahl von Artefaktquellen, die mit dem vorliegenden Aufbau auftreten k{\"o}nnen, wurden diskutiert und Korrekturschemata und Anweisungen zur Vermeidung dieser Artefakte bereitgestellt. In Kapitel 4 wurde der Aufbau anhand einer Vierpulssequenz mit Cresylviolett in Ethanol demonstriert. Es wurde ein detailliertes Datenerfassungs- und Datenanalyseverfahren vorgestellt, bei dem Phase Cycling zur Extraktion der nichtlinearen Beitr{\"a}ge verwendet wird. Abh{\"a}ngig vom Phase Cycling-Schema ist es m{\"o}glich, alle nichtlinearen Beitr{\"a}ge in einer einzigen Messung aufzudecken. Literaturbekannte Oszillationen von Cresylviolett w{\"a}hrend der Populationszeit konnten reproduziert werden. Aufgrund der Messung in einer Umgebung im Rotating Frame und einer 1 kHz Schuss-zu-Schuss Pulsinkrementierung war es m{\"o}glich, ein 2D-Spektrum f{\"u}r eine Populationszeit in 6 s zu erhalten. Eine Fehlerevaluierung hat gezeigt, dass eine zehnfache Mittelwertbildung (1 min) ausreicht, um eine mittlere quadratische Abweichung von < 0:05 gegen� uber einer 400-fachen Mittelwertbildung zu erhalten, was beweist, dass das verwendete Messschema gut geeignet ist. Die Realisierung des ersten experimentellen fluoreszenzdetektierten 2Q-2D-Experiments und der erste experimentelle Zugang zum theoretisch vorhergesagten 1Q-2Q-Beitrag wurden in Kapitel 5 vorgestellt. Zu diesem Zweck wurde eine Dreipulssequenz auf Cresylviolett in Ethanol angewendet und die experimentellen Ergebnisse wurden mit Simulationen eines einfachen Sechs-Level-Systems verglichen. Im Gegensatz zur koh{\"a}renzdetektierten 2Q-2D-Spektroskopie sind bei dem vorgestellten Aufbau keine nichtresonanten L{\"o}sungsmittelsignale und Streuungsbeitr{\"a}ge sichtbar und es ist kein zus{\"a}tzliches Phasing-Verfahren erforderlich. Durch eine Kombination aus Experimenten und systematischen Simulationen wurden Informationen {\"u}ber die Relaxation der L{\"o}sungsmittelh{\"u}lle und die Korrelationsenergie gewonnen. Auf der Basis von Simulationen wurden Effekte der Pfadausl{\"o}schung diskutiert, die darauf schließen lassen, dass die 1Q-2Q-2D-Spektroskopie m{\"o}glicherweise die quantitative Analyse f{\"u}r molekulare Systeme erleichtert, die eine starke nichtstrahlende Relaxation aus h{\"o}heren elektronischen Zust{\"a}nden aufweisen. Zusammenfassend ist es mit der vorgestellten Methode m{\"o}glich, alle nichtlinearen Beitr{\"a}ge mit einer schnellen Datenaufnahme und einem einfach einzurichtenden Aufbau zu erfassen. Die gezeigten Proof-of-Principle-Experimente stellen eine Erweiterung der 2D-Spektroskopie-Werkzeugpalette dar und bieten eine fundierte Grundlage f{\"u}r zuk{\"u}nftige Anwendungen wie mehrdimensionale Spektroskopie, mehrfarbige 2D-Spektroskopie oder die Kombination von simultanen Fl{\"u}ssig- und Gasphasen-2D-Experimenten.}, subject = {Fluoreszenzspektroskopie}, language = {en} } @phdthesis{Schwenk2018, author = {Schwenk, Nicola}, title = {Seeing the Light: Synthesis of Luminescent Rhodacyclopentadienes and Investigations of their Optical Properties and Catalytic Activity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Luminescent organotransition metal complexes are of much current interest. As the large spin-orbit coupling of 2nd and 3rd row transition metals usually leads to rapid intersystem crossing from S1 to T1, which enables phosphorescence, there is a special interest in using triplet-emitting materials in organic or organometallic light emitting diodes (OLEDs). Marder et al. have found that, reductive coupling of both para-R-substituted diarylbutadiynes and diaryldodecatetraynes on Rh(PMe3)4X leads to quantitative yields of bis(arylethynyl)-rhodacyclopentadienes with complete regiospecificity (R = BMes2, H, Me, OMe, SMe, CF3, CN, CO2Me, NMe2, NO2, C≡C-TMS and X = -C≡C-TMS, -C≡C-C6H4-4-NMe2, -C≡C-C≡C-C6H4-4-NPh2, Me, Cl).47,49 Unexpectedly, these compounds show intense fluorescence rather than phosphorescence (ɸf = 0.33-0.69, t = 1.2 3.0 ns). The substituent R has a significant influence on the photophysical properties, as absorption and emission are both bathochromically shifted compared to R = H, especially for R = π-acceptor. To clarify the mechanism of the formation of the rhodacyclopentadienes, and to investigate further their unique photophysical properties, a series of novel, luminescent rhodacyclopentadienes with dithiocarbamate as a bidentate ligand at the rhodium centre has been synthesised and characterised (R = NO2, CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe). The rhodacyclopentadienes have been formed via reductive coupling of diaryl undecatetraynes with [Rh(k2-S,S`-S2CNEt2)(PMe3)2]. The structures of a series of such compounds were solved by single crystal X-ray diffraction and are discussed in this work. The compounds were fully characterised via NMR, UV/Vis and photoluminescence spectroscopy as well as by elemental analysis, high-resolution mass spectrometry (HRMS) and X-ray diffraction. When heating the reactions, another isomer is formed to a certain extent. The so-called dibenzorhodacyclopentadienes already appeared during earlier studies of Marder et al., when acetylacetonate (acac) was employed as the bidentate ligand at the Rh-centre. They are probably formed via a [4+2] cycloaddition reaction and C-H activation, followed by a β-H shift. Use of the perfluorinated phenyl moiety Ar = C6F4-4-OMe provided a total new insight into the mechanism of formation of the rhodacyclopentadiene isomers and other reactions. Besides the formation of the expected rhodacyclopentadiene, a bimetallic compound was generated, isolated and characterised via X-ray crystallography and NMR spectroscopy, elemental analysis and high resolution mass spectrometry. For further comparison, analogous reactions with [Rh(k2 S,S` S2CNEt2)(PPh3)2] and a variety of diaryl undecatetraynes (R = NO2 CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe) were carried out. They also yield the expected rhodacyclopentadienes, but quickly react with a second or even third equivalent of the tetraynes to form, catalytically, alkyne cyclotrimerisation products, namely substituted benzene derivatives (dimers and trimers), which are highly luminescent. The rhodacyclopentadienes (R = NO2, CO2Me, Me, SMe, Ar = C6F4-4-OMe) are stable and were isolated. The structures of a series of these compounds were obtained via single crystal X-ray crystallography and the compounds were fully characterised via NMR, UV/Vis and photoluminescence spectroscopy as well as by elemental analysis and HRMS. Another attempt to clarify the mechanism of formation of the rhodacyclopentadienes involved reacting a variety of diaryl 1,3-butadiynes (R = CO2Me, Me, NMe2, naphthyl) with [Rh(k2 S,S` S2CNEt2)(PMe3)2]. The reactions stop at an intermediate step, yielding a 1:1 trans π-complex, confirmed by single crystal X-ray diffraction and NMR spectroscopy. Only after several weeks, or under forcing conditions (µw / 80 °C, 75 h), the formation of another major product occurs, having bound a second diaryl 1,3-butadiyne. Based on earlier results of Murata, the product is identified as an unusual [3+2] cycloaddition product, ϭ-bound to the rhodium centre.}, subject = {Rhodium}, language = {en} } @phdthesis{Sieck2018, author = {Sieck, Carolin}, title = {Synthesis and Photophysical Properties of Luminescent Rhodacyclopentadienes and Rhodium 2,2'-Biphenyl Complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The photochemistry and photophysics of transition metal complexes are of great interest, since such materials can be exploited for a wide range of applications such as in photocatalysis, sensing and imaging, multiphoton-absorption materials and the fabrication of OLEDs. A full understanding of the excited state behavior of transition metal compounds is therefore important for the design of new materials for the applications mentioned above. In principle, the luminescence properties of this class of compounds can be tuned by changing the metal or subtle changes in the ligand environment. Furthermore, transition-metal complexes continue to play a major role in modern synthetic chemistry. In particular, they can realize selective transformations that would either be difficult or impossible by conventional organic chemistry. For example, they enable the efficient and selective formation of carbon-carbon bonds. One famous example of these types of transformations are metal-catalyzed cyclization reactions. Herein, metallacyclopentadiene complexes are considered as key intermediates in a number of metal-mediated or -catalyzed cyclization reactions, i.e. the [2+2+2] cyclotrimerization of alkynes. Recent research has focused on the synthesis and characterization of these metallacyclic intermediates such as MC4 ring systems. Metallacyclopentadienes are structurally related to main group EC4 systems such as boroles, siloles, thiophenes and phospholes. Overall, this group of compounds (EC4 analogues) is well known and has attracted significant attention due to their electron-transport and optical properties. Unlike transition metal analogues, however, these EC4 systems show no phosphorescence, which is due to inefficient SOC compared to 2nd and 3rd row transition metals, which promoted us to explore the phosphorescence potential of metallacyclopentadienes. In 2001, Marder et al. developed a one-pot high-yield synthesis of luminescent 2,5 bis(arylethynyl)rhodacyclopentadienes by reductive coupling of 1,4-diarylbuta-1,3-diynes at a suitable rhodium(I) precursor. Over the past years, a variety of ligands (e.g. TMSA, S,S' diethyldithiocarbamate, etc.) and 1,4-bis(p-R-phenyl)-1,3-butadiynes or linked , bis(p-R-arylethynyl)alkanes (R = electron withdrawing or donating groups) were investigated and always provided a selective formation of 2,5 bis(arylethynyl)rhodacyclopentadienes, which were reported to be fluorescent despite presence of the heavy atom. To examine the influence of the ligand sphere around the rhodium center on the intersystem-crossing (ISC) processes in the above-mentioned fluorescent rhodacyclopentadienes and to increase the metal character in the frontier orbitals by destabilizing the Rh filled d-orbitals, a -electron donating group was introduced, namely acetylacetonato (acac). Interestingly, in 2010 Tay reacted [Rh(κ2-O,O-acac)(PMe3)2] with ,-bis(p-R-arylbutadiynyl)alkanes and observed not only the fluorescent 2,5 bis(arylethynyl)rhodacyclopentadienes, but also rhodium 2,2'-bph complexes as products, which were reported to be phosphorescent in preliminary photophysical studies. In this work, the reaction behavior of [Rh(κ2-O,O-acac)(L)2] (L = PMe3, P(p-tolyl)3) with different ,-bis(p-R-arylbutadiynyl)alkanes was established. Furthermore, the separation of the two isomers 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium 2,2'-bph complexes (B), and the photophysical properties of those were explored in order to clarify their fundamentally different excited state behaviors. Reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with ,-bis(arylbutadiynyl)alkanes gives exclusively weakly fluorescent 2,5-bis(arylethynyl)rhodacyclopentadienes. Changing the phosphine ligands to PMe3, reactions of [Rh(κ2-O,O-acac)(PMe3)2] and , bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties, as mentioned before. As a result of a normal [2+2] reductive coupling at rhodium, 2,5 bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence. Rhodium 2,2'-bph complexes (B), which show phosphorescence, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent -H-shift. Control of the isomer distribution, of 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium biphenyl complexes (B), is achieved by modification of the linked , bis(arylbutadiynyl)alkane. Changing the linker length from four CH2 to three CH2 groups, dramatically favors the formation of the rhodium biphenyl isomer B, providing a fundamentally new route to access photoactive metal biphenyl compounds in good yields. This is very exciting as the photophysical properties of only a limited number of bph complexes of Ir, Pd and Pt had been explored. The lack of photophysical reports in the literature is presumably due to the limited synthetic access to various substituted 2,2'-bph transition metal complexes. On the other hand, as the reaction of [Rh(κ2-O,O-acac)(P(p-tolyl)3)2] with , bis(arylbutadiynyl)alkanes provides a selective reaction to give weakly fluorescent 2,5 bis(arylethynyl)rhodacyclopentadiene complexes with P(p-tolyl)3 as phosphine ligands, a different synthetic access to 2,5-bis(arylethynyl)rhodacyclopentadiene complexes with PMe3 as phosphine ligands was developed, preventing the time-consuming separation of the isomers. The weak rhodium-phosphorus bonds of 2,5-bis(arylethynyl)rhodacyclopentadiene complexes bearing P(p tolyl)3 as phosphine ligands, relative to those of related PMe3 complexes, allowed for facile ligand exchange reactions. In the presence of an excess of PMe3, a stepwise reaction was observed, giving first the mono-substituted, mixed-phosphine rhodacyclopentadiene intermediates and, subsequently, full conversion to the highly fluorescent 2,5 bis(arylethynyl)-rhodacyclopentadienes bearing only PMe3 ligands (by increasing the reaction temperature). With spectroscopically pure 2,5-bis(arylethynyl)rhodacyclopentadiene complexes A (bearing PMe3 as phosphine ligands) and rhodium 2,2-bph complexes B in hand, photophysical studies were conducted. The 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are highly fluorescent with high quantum yields up to 54\% and very short lifetimes (τ = 0.2 - 2.5 ns) in solution at room temperature. Even at 77 K in glass matrices, no additional phosphorescence is observed which is in line with previous observations made by Steffen et al., who showed that SOC mediated by the heavy metal atom in 2,5-bis(arylethynyl)rhodacyclopentadienes and 2,5 bis(arylethynyl)iridacyclopentadienes is negligible. The origin of this fluorescence lies in the pure intra-ligand (IL) nature of the excited states S1 and T1. The HOMO and the LUMO are nearly pure  and * ligand orbitals, respectively, and the HOMO is energetically well separated from the filled rhodium d orbitals. The absence of phosphorescence in transition metal complexes due to mainly IL character of the excited states is not unusual, even for heavier homologues than rhodium with greater SOC, resulting in residual S1 emission (fluorescence) despite ISC S1→Tn being sufficiently fast for population of T1 states. However, there are very few complexes that exhibit fluorescence with the efficiency displayed by our rhodacyclopentadienes, which involves exceptionally slow S1→Tn ISC on the timescale of nanoseconds rather than a few picoseconds or faster. In stark contrast, the 2,2'-bph rhodium complexes B are exclusively phosphorescent, as expected for 2nd-row transition metal complexes, and show long-lived (hundreds of s) phosphorescence (Ф = 0.01 - 0.33) at room temperature in solution. As no fluorescence is detected even at low temperature, it can be assumed that S1→Tn ISC must be faster than both fluorescence and non-radiative decay from the S1 state. This contrasts with the behavior of the isomeric 2,5-bis(arylethynyl)rhodacyclopentadienes for which unusually slow ISC occurs on a timescale that is competitive with fluorescence (vide supra). The very small values for the radiative rate constants, however, indicate that the nature of the T1 state is purely 3IL with weak SOC mediated by the Rh atom. The phosphorescence efficiency of these complexes in solution at room temperature is even more impressive, as non-radiative coupling of the excited state with the ground state typically inhibits phosphorescence. Instead, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to 646 s and to emit with high quantum yields for biphenyl complexes. The exceptionally long lifetimes and small radiative rate constants of the rhodium biphenyl complexes are presumably a result of the large conjugated -system of the organic ligand. According to TD DFT studies, the T1 state involves charge-transfer from the biphenyl ligand into the arylethynyl moiety away from the rhodium atom. This reduces the SOC of the metal center that would be necessary for fast phosphorescence. These results show that the π-chromophoric ligand can gain control over the photophysical excited state behavior to such an extent that even heavy transition metal atoms like rhodium participate in increasing the fluorescence such as main-group analogues do. Furthermore, in the 2,2'-bph rhodium complexes, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to hundreds of s and to emit with exceptional quantum yields. Therefore, investigations of the influence of the ligand sphere around the rhodium center have been made to modify the photophysical properties and furthermore to explore the reaction behavior of these rhodium complexes. Bearing in mind that the P(p-tolyl)3 ligands can easily be replaced by the stronger -donating PMe3 ligands, ligand exchange reactions with N heterocyclic carbenes (NHCs) as even stronger -donors was investigated. Addition of two equivalents of NHCs at room temperature led to the release of one equivalent of P(p-tolyl3) and formation of the mono-substituted NHC rhodium complex. The reaction of isolated mono-NHC complex with another equivalent of NHC at room temperature did not result in the exchange of the second phosphine ligand. Moderate heating of the reaction to 60 °C, however, resulted in the formation of tetra-substituted NHC rhodium complex [Rh(nPr2Im)4]+[acac]-. To circumvent the loss of the other ligands in the experiments described above, a different approach was investigated to access rhodacyclopentadienes with NHC instead of phosphine ligands. Reaction of the bis-NHC complex [Rh(κ2-O,O-acac)(nPr2Im)2] with , bis(arylbutadiynyl)alkanes at room temperature resulted 2,5-bis(arylethynyl)-rhodacyclopentadienes with the NHC ligands being cis or trans to each other as indicated by NMR spectroscopic measurements and single-crystal X-ray diffraction analysis. Isolation of clean material and a fundamental photophysical study could not be finished for reasons of time within the scope of this work. Furthermore, shortening of the well conjugated -system of the chromophoric ligand (changing from tetraynes to diynes) was another strategy to examine the reaction behavior of theses ligands with rhodium(I) complexes and to modify the excited state behavior of the formed rhodacyclopentadienes. The reaction of [Rh(κ2-O,O-acac)(PMe3)2] with 1,7 diaryl 1,6-heptadiynes (diynes) leads to the selective formation of 2,5 bis(aryl)rhodacyclopentadienes. These compounds, however, are very weakly fluorescent with quantum yields ФPL < 1, and very short emission lifetimes in toluene at room temperature. Presumably, vibrational modes of the bis(phenyl)butadiene backbone leads to a higher rate constant for non-radiative decay and is thus responsible for the low quantum yields compared to their corresponding PMe3 complexes with the bis(phenylethynyl)butadiene backbone at room temperature. No additional phosphorescence, even at 77 K in the glass matrix is observed. Chancing the phosphine ligands to P(p-tolyl)3, reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with 1,7-diaryl-1,6-heptadiynes, however, resulted in a metal-mediated or -catalyzed cycloaddition reaction of alkynes and leads to full conversion to dimerization and trimerization products and recovery of the rhodium(I) starting material. This is intuitive, considering that P(Ar)3 (Ar = aryl) ligands are considered weaker -donor ligands and therefore have a higher tendency to dissociate. Therefore, rhodium(I) complexes with aryl phosphines as ligands have an increasing tendency to promote catalytic reactions, while the stronger -donating ligands (PMe3 or NHCs) promote the formation of stable rhodium complexes. Finally, in Chapter 4, the findings of the work conducted on N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (CAACs) is presented. These compounds have unique electronic and steric properties and are therefore of great interest as ligands and organo-catalysts. In this work, studies of substitution reactions involving novel carbonyl complexes of rhodium and nickel are reported. For characterization and comparison of CAACmethyl with the large amount of data available for NHC and sterically more demanding CAAC ligands, an overview on physicochemical data (electronics, sterics and bond strength) is provided. The reaction of [Rh(-Cl)(CO)2]2 with 2 equivalents of CAACmethyl at low temperature afforded the mononuclear complex cis-[(RhCl(CO)2(CAACmethyl)]. However, reacting [Rh( Cl)(CO)2]2 with CAACmethyl at room temperature afforded a mixture of complexes. The mononuclear complex [(RhCl(CO)(CAACmethyl)2], the chloro-bridged complexes [(Rh2( Cl)2(CO)3(CAACmethyl)], [Rh(-Cl)(CO)(CAACmethyl)]2 and a carbon monoxide activation product were formed. The carbon monoxide activation product is presumably formed via the reaction of two equivalents of the CAAC with CO to give the bis-carbene adduct of CO, and subsequent rearrangement via migration of the Dipp moiety. While classical N-heterocyclic carbenes are not electrophilic enough to react with CO, related diamidocarbenes and alkyl(amino)carbenes undergo addition reactions with CO to give the corresponding ketenes. Consequently, to obtain the CAAC-disubstituted mononuclear complex selectively, 8 equivalents of CAACmethyl were reacted with 1 equivalent of [Rh(-Cl)(CO)2]2. For the evaluation of TEP values, [Ni(CO)3(CAAC)] was synthesized in collaboration with the group of Radius. With the complexes [(RhCl(CO)(CAACmethyl)2] and [Ni(CO)3(CAAC)] in hand, it was furthermore possible to examine the electronic and steric parameters of CAACmethyl. Like its bulkier congeners CAACmenthyl and CAACcy, the methyl-substituted CAAC is proposed to be a notably stronger -donor than common NHCs. While it has a very similar TEP value of 2046 cm-1, it additionally possess superior -acceptor properties (P = 67.2 ppm of phosphinidene adduct). CAACs appear to be very effective in the isolation of a variety of otherwise unstable main group and transition metal diamagnetic and paramagnetic species. This is due to their low-lying LUMO and the small singlet-triplet gap. These electronic properties also allow free CAACs to activate small molecules with strong bonds. They also bind strongly to transition metal centers, which enables their use under harsh conditions. One recent development is the use of CAACs as ligands in transition metal complexes, which previously were only postulated as short-lived catalytic intermediates.[292,345] The availability of these reactive species allows for a better understanding of known catalytic reactions and the design of new catalysts and, moreover, new applications. For example Radius et al.[320] prepared a CAAC complex of cobalt as a precursor for thin-film deposition and Steffen et al.[346] reported a CAAC complex of copper with very high photoluminescent properties, which could be used in LED devices. With the development of cheap and facile synthetic methods for the preparation of CAACs and their corresponding transition metals complexes, as well as the knowledge of their electronic properties, it is safe to predict that applications in and around this field of chemistry will continue to increase.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} } @phdthesis{Schreiber2018, author = {Schreiber, Benjamin}, title = {Selective and enhanced fluorescence by biocompatible nanocoatings to monitor G-protein-coupled receptor dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173923}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Fluorescence microscopy has become one of the most important techniques for the imaging of biological cells and tissue, since the technique allows for selective labeling with fluorescent molecules and is highly suitable for low-light applications down to the single molecule regime. The methodological requirements are well-defined for studying membrane receptors within a highly localized nanometer-thin membrane. For example, G-protein-coupled receptors (GPCRs) are an extensively studied class of membrane receptors that represent one of the most important pharmaceutical targets. Ligand binding and GPCR activation dynamics are suspected to take place at the millisecond scale and may even be far faster. Thus, techniques that are fast, selective, and live-cell compatible are required to monitor GPCR dynamics. Fluorescence resonance energy transfer (FRET) and total internal reflection fluorescence microscopy (TIRF-M) are methods of choice to monitor the dynamics of GPCRs selectively within the cell membrane. Despite the remarkable success of these modalities, there are limitations. Most importantly, inhomogeneous illumination can induce imaging artifacts, rendering spectroscopic evaluation difficult. Background signal due to scattering processes or imperfect labeling can hamper the signal-to-noise, thus limiting image contrast and acquisition speed. Careful consideration of the internal physiology is required for FRET sensor design, so that ligand binding and cell compatibility are well-preserved despite the fluorescence labeling procedures. This limitation of labeling positions leads to very low signal changes in FRET-based GPCR analysis. In addition, microscopy of these systems becomes even more challenging in single molecule or low-light applications where the accuracy and temporal resolution may become dramatically low. Fluorescent labels should therefore be brighter, protected from photobleaching, and as small as possible to avoid interference with the binding kinetics. The development of new fluorescent molecules and labeling methods is an ongoing process. However, a complete characterization of new labels and sensors takes time. So far, the perfect dye system for GPCR studies has not been found, even though there is high demand. Thus, this thesis explores and applies a different approach based on improved illumination schemes for TIRF-M as well as metal-coated coverslips to enhance fluorescence and FRET efficiency. First, it is demonstrated that a 360° illumination scheme reduces typical TIRF artifacts and produces a much more homogenously illuminated field of view. Second, membrane imaging and FRET spectroscopy are improved by metal coatings that are used to modulate the fluorescent properties of common fluorescent dyes. Computer simulation methods are used to understand the underlying photophysics and to design the coatings. Third, this thesis explores the operational regime and limitations of plasmonic approaches with high sectioning capabilities. The findings are summarized by three publications that are presented in the results section of this work. In addition, the theory of fluorescence and FRET is explained, with particular attention to its emission modulations in the vicinity of metal-dielectric layers. Details of the instrumentation, computer simulations, and cell culture are described in the method section. The work concludes with a discussion of the findings within the framework of recent technological developments as well as perspectives and suggestions for future approaches complete the presented work.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @article{PloetzPolyutovIvanovetal.2016, author = {Pl{\"o}tz, P.-A. and Polyutov, S. P. and Ivanov, S. D. and Fennel, F. and Wolter, S. and Niehaus, T. and Xie, Z. and Lochbrunner, S. and W{\"u}rthner, Frank and K{\"u}hn, O.}, title = {Biphasic aggregation of a perylene bisimide dye identified by exciton-vibrational spectra}, series = {Physical Chemistry Chemical Physics}, volume = {18}, journal = {Physical Chemistry Chemical Physics}, number = {36}, doi = {10.1039/c6cp04898f}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187387}, pages = {25110-25119}, year = {2016}, abstract = {The quantum efficiency of light emission is a crucial parameter of supramolecular aggregates that can be tuned by the molecular design of the monomeric species. Here, we report on a strong variation of the fluorescence quantum yield due to different phases of aggregation for the case of a perylene bisimide dye. In particular, a change of the dominant aggregation character from H- to J-type within the first aggregation steps is found, explaining the observed dramatic change in quantum yield. This behaviour is rationalised by means of a systematic study of the intermolecular potential energy surfaces using the time-dependent density functional based tight-binding (TD-DFTB) method. This provides a correlation between structural changes and a coupling strength and supports the notion of H- type stacked dimers and J-type stack-slipped dimers. The exciton-vibrational level structure is modelled by means of an excitonic dimer model including two effective vibrational modes per monomer. Calculated absorption and fluorescence spectra are found to be in reasonable agreement with experimental ones, thus supporting the conclusion on the aggregation behaviour.}, language = {en} } @article{HarkinBrochSchrecketal.2016, author = {Harkin, David J. and Broch, Katharina and Schreck, Maximilian and Ceyman, Harald and Stoy, Andreas and Yong, Chaw-Keong and Nikolka, Mark and McCulloch, Ian and Stingelin, Natalie and Lambert, Christoph and Sirringhaus, Henning}, title = {Decoupling charge transport and electroluminescence in a high mobility polymer semiconductor}, series = {Advanced Materials}, volume = {28}, journal = {Advanced Materials}, number = {30}, doi = {10.1002/adma.201600851}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187670}, pages = {6378-6285}, year = {2016}, abstract = {Fluorescence enhancement of a high-mobility polymer semiconductor is achieved via energy transfer to a higher fluorescence quantum yield squaraine dye molecule on 50 ps timescales. In organic light-emitting diodes, an order of magnitude enhancement of the external quantum efficiency is observed without reduction in the charge-carrier mobility resulting in radiances of up to 5 W str\(^{-1}\) m\(^{-2}\) at 800 nm.}, language = {en} } @article{SirenStetterHirschbergetal.2013, author = {Sir{\´e}n, Anna-Leena and Stetter, Christian and Hirschberg, Markus and Nieswandt, Bernhard and Ernestus, Ralf-Ingo and Heckmann, Manfred}, title = {An experimental protocol for in vivo imaging of neuronal structural plasticity with 2-photon microscopy in mice}, series = {Experimental \& Translational Stroke Medicine}, journal = {Experimental \& Translational Stroke Medicine}, doi = {10.1186/2040-7378-5-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96908}, year = {2013}, abstract = {Introduction Structural plasticity with synapse formation and elimination is a key component of memory capacity and may be critical for functional recovery after brain injury. Here we describe in detail two surgical techniques to create a cranial window in mice and show crucial points in the procedure for long-term repeated in vivo imaging of synaptic structural plasticity in the mouse neocortex. Methods Transgenic Thy1-YFP(H) mice expressing yellow-fluorescent protein (YFP) in layer-5 pyramidal neurons were prepared under anesthesia for in vivo imaging of dendritic spines in the parietal cortex either with an open-skull glass or thinned skull window. After a recovery period of 14 days, imaging sessions of 45-60 min in duration were started under fluothane anesthesia. To reduce respiration-induced movement artifacts, the skull was glued to a stainless steel plate fixed to metal base. The animals were set under a two-photon microscope with multifocal scanhead splitter (TriMScope, LaVision BioTec) and the Ti-sapphire laser was tuned to the optimal excitation wavelength for YFP (890 nm). Images were acquired by using a 20×, 0.95 NA, water-immersion objective (Olympus) in imaging depth of 100-200 μm from the pial surface. Two-dimensional projections of three-dimensional image stacks containing dendritic segments of interest were saved for further analysis. At the end of the last imaging session, the mice were decapitated and the brains removed for histological analysis. Results Repeated in vivo imaging of dendritic spines of the layer-5 pyramidal neurons was successful using both open-skull glass and thinned skull windows. Both window techniques were associated with low phototoxicity after repeated sessions of imaging. Conclusions Repeated imaging of dendritic spines in vivo allows monitoring of long-term structural dynamics of synapses. When carefully controlled for influence of repeated anesthesia and phototoxicity, the method will be suitable to study changes in synaptic structural plasticity after brain injury.}, language = {en} } @phdthesis{Goehler2012, author = {G{\"o}hler, Antonia}, title = {Untersuchung Karbohydrat-bindender Proteine mit hoher zeitlicher und r{\"a}umlicher Aufl{\"o}sung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76665}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das menschliche Genom verschl{\"u}sselt 30000 bis 40000 Proteine, von denen ein Großteil kovalent gebundene Karbohydrat-Gruppen an Asparagin-, Serin-, Threonin- oder Hydroxylysin-Resten tr{\"a}gt. Diese sogenannten Glykoproteine sind allgegenw{\"a}rtige Bestandteile der extrazellul{\"a}ren Matrix von Zelloberfl{\"a}chen. Sie steuern Zell-Zell- und Zell-Matrix-Kommunikationen, k{\"o}nnen bei der roteinfaltung helfen bzw. die Proteinstabilit{\"a}t erh{\"o}hen oder Immunantworten regulieren. Die Ausl{\"o}sung von biologischen Prozesse erfordert aber {\"U}bersetzer der zuckerbasierten Informationen. Solche Effektoren sind die Lektine, unter ihnen auch die Galektine. Galektine binden spezifisch β-Galaktosen, weisen strukturelle {\"U}bereinstimmungen in der Aminos{\"a}uresequenz ihrer Zuckererkennungsdom{\"a}nen (CRDs) auf und zeigen ein „jelly-roll"-Faltungsmuster, bestehend aus einem β-Sandwich mit zwei antiparallelen Faltbl{\"a}ttern. Strukturell werden die CRDs in drei verschiedenen, topologischen Formen pr{\"a}sentiert. Proto-Typen existieren als nicht-kovalent verkn{\"u}pfte Dimere der CRDs, Chimera-Typen besitzen neben der CRD eine Nicht-Lektin-Dom{\"a}ne und bei den Tandem-Repeat-Typen sind zwei verschiedene CRDs {\"u}ber ein kurzes Linker-Peptid kovalent verbunden. Galektine werden sowohl in normalem wie auch pathogenem Gewebe exprimiert und das zunehmende Wissen {\"u}ber die Beteiligung an verschiedenen Krankheiten und Tumorwachstum liefert die Motivation, strukturelle Aspekte und die Vernetzung von Lektinen detailliert, insbesondere im Hinblick auf ihre intrafamili{\"a}ren Unterschiede, zu untersuchen. Durch die Kombination verschiedener Spektroskopie-Techniken mit hoher zeitlicher und r{\"a}umlicher Aufl{\"o}sung, basierend auf der Verwendung von Fluorophoren (intrinsisch und extrinsisch), werden in dieser Arbeit die Eigenschaften von Galektinen n{\"a}her untersucht. Mit Fluoreszenz-Korrelations-Spektroskopie (FCS) und Anisotropie-Messungen wird gezeigt, dass eine Liganden-Bindung bei Proto-Typ-Galektinen mit einer Verringerung des hydrodynamischen Radius einhergeht. Bei Tandem-Repeat- und Chimera-Typen bleibt der Radius konstant. Daf{\"u}r skaliert die Diffusionskonstante von Tandem-Repeat-Typen anormal mit der molaren Masse. Die Anisotropie-Messungen werden parallel zu den FCS-Messungen durchgef{\"u}hrt, um einen Einfluss des Fluoreszenzmarkers auszuschließen. Mit Hilfe dieser Technik wird außerdem gezeigt, dass unterschiedliche Dissoziationskonstanten und Kinetiken f{\"u}r den Bindungsprozess innerhalb der Proto-Typ-Gruppe m{\"o}glichweise auf unterschiedliche Konformationsdynamiken zur{\"u}ckgehen. Der Vergleich von hGal-1 und cG-1B verdeutlicht, dass strukturelle {\"A}hnlichkeiten zwar ein identisches Bindungsverhalten hervorrufen k{\"o}nnen, der Oxidationsprozess der Proteine aber unterschiedlich ablaufen kann. Beide Methoden k{\"o}nnen so als sehr sensitive Techniken zur Untersuchung von Strukturmerkmalen bei Galektinen etabliert werden, wobei die {\"U}bertragbarkeit auf andere Glykoproteine gew{\"a}hrleistet ist. Weiterhin gilt Quervernetzung als eine der wichtigsten Eigenschaften von Galektinen, da durch die Vernetzung von Glykoproteinen auf der Zelloberfl{\"a}che Signalwege aktiviert und Immunantworten reguliert werden. Um die r{\"a}umliche organisation und Quervernetzung von hGal-1 auf den Oberfl{\"a}chen von Neuroblastomzellen nachzuweisen, eignet sich das hochaufl{\"o}sende Mikroskopieverfahren dSTORM sehr gut. Durch Verwendung des photoschaltbaren Fluorophors Alexa647 als spezifischem Marker f{\"u}r hGal-1, einem Standard-Weitfeld-Aufbau und verschiedenen Analyseverfahren, kann eine Clusterformation von hGal-1 auf der Zelloberfl{\"a}che best{\"a}tigt werden. hGal-1 bildet Cluster mit einem mittleren Durchmesser von 81±7 nm aus. Der Durchmesser ist unabh{\"a}ngig von der Konzentration, w{\"a}hrend die Anzahl der Cluster davon abh{\"a}ngt. F{\"u}r die Clusterausbildung ist ein Startpunkt, also eine minimale Dichte der Galektin-Molek{\"u}le, notwendig. Durch Blockierung der CRDs mit Laktose wird die Clusterbildung unterdr{\"u}ckt und die Spezifit{\"a}t der CRDs gegen{\"u}ber β-Galaktosen erneut herausgestellt. Anders als dimeres hGal-1 binden Monomere deutlich schlechter an die Membranrezeptoren. Es werden keine Cluster ausgebildet, eine Quervernetzung von Membranrezeptoren ist nicht m{\"o}glich. Außerdem kann es durch die Monomere zu einer vollst{\"a}ndigen Markierung und damit Abkugellung der Zellen kommen. M{\"o}glicherweise wird der Zelltod induziert. Hochaufl{\"o}sende Mikroskopieverfahren sind durch den Markierungsprozess limitiert. Die bioorthogonale Click-Chemie er{\"o}ffnet jedoch neue M{\"o}glichkeiten zur Markierung und Visualisierung von Biomolek{\"u}len, ohne die Notwenigkeit genetischer Manipulationen. Es werden modifizierte Zuckermolek{\"u}le in die Zellmembranen eingebaut, {\"u}ber eine 1,3-polare Cycloaddition mit einem Alkin markiert und ihre Verteilung mit Hilfe von dSTORM untersucht. Es wird nachgewiesen, dass die Zuckermolek{\"u}le in Clustern auftreten und Click-Chemie trotz dem Katalysator Kupfer an lebenden Zellen durchf{\"u}hrbar ist. Die Bewegung der Gesamtcluster wird mittels Mean Square Displacement aufgeschl{\"u}sselt und eine Diffusionskonstante f{\"u}r Cluster im Bereich von 40 - 250 nm bestimmt. Zusammenfassend stellt die Kombination verschiedener Spektroskopie-Techniken ein gutes Werkzeug zur Untersuchung von Karbohydrat-bindendenden Proteinen mit hoher r{\"a}umlicher und zeitlicher Aufl{\"o}sung dar und erm{\"o}glicht einen neuen Einblick in die Biologie der Galektine.}, subject = {Fluoreszenz}, language = {de} } @phdthesis{Bosten2011, author = {Bosten, Judith}, title = {Entwicklung und Einsatz eines Kreislaufmodells zum optischen Nachweis von Propofol in Blut}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57388}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Einf{\"u}hrung: Die physikalischen Eigenschaften des intraven{\"o}sen An{\"a}sthetikums Propofol (2,6-Diisopropylphenol) erlauben dessen fluoreszenzspektrometrische Detektion. Zur Entwicklung eines direkten Online-Monitorings im optisch dichten Medium Blut wird das Signalverhalten von Propofol im mit Blutprodukten gef{\"u}llten Kreislaufsystem untersucht. Material und Methoden: Der kontinuierliche Umsatz von 140,2 ml Probenvolumen im Kreislaufmodell mit integrierter Durchflussquarzk{\"u}vette bezweckt ein stabiles Fluoreszenzniveau des Messmediums, da Blutprodukte in statischer Versuchsanordnung unter der verwendeten Anregungsstrahlung (UV-C) starken photochemischen Bleichungseffekten ausgesetzt sind. Als Messmedien untersucht werden Gefrorenes Frischplasma (GFP), eine Suspension aus Erythrozytenkonzentrat und GFP (EK + GFP) sowie am Versuchstag gespendetes heparinisiertes Vollblut. Es erfolgt die standardisierte Injektionen von vier Propofolboli, durch die im System Konzentrationen von 35,7 μg/ml bis 3,6 μg/ml entstehen und den klinisch relevanten Wirkspiegeln bei Narkoseeinleitung sowie Narkoseaufrechterhaltung entsprechen. Unter Anregung mit Licht der Wellenl{\"a}nge 274 nm liefert Propofol ein maximales Signal bei 300 nm. Anhand der in engen zeitlichen Abst{\"a}nden aufgenommen Fluoreszenzspektren werden die Propofoleffekte bei 300 nm im Summationsspektrum des Blut-Propofol-Gemischs analysiert. Ergebnisse: Die Signalanstiege bei 300 nm nach Injektion in das mit GFP bzw. EK + GFP gef{\"u}llte Kreislaufsystem sind hochsignifikant f{\"u}r die erzeugten Propofolspiegel von 35,7 μg/ml bis 3,6 μg/ml und weisen eine sehr gute lineare Korrelation von R2 = 0,73 bis zu R2 = 0,99 zwischen Fluoreszenzsignal und Propofolkonzentration auf. Allein f{\"u}r diese Messmedien kann durch den Einsatz des Kreislaufmodells ein ausreichend stabiles Fluoreszenzsignal zum Propofolnachweis erreicht werden. Dem Fluoreszenzanstieg nach Propofolinjektion folgt in allen Messmedien ein {\"u}ber 30 Minuten andauernder Signalabfall, f{\"u}r den nach fluoreszenzspektrometrischer Untersuchung von Schlauchproben des Kreislaufmodells die Adsorption des lipophilen An{\"a}sthetikums an Silikon als ein urs{\"a}chlicher Faktor bestimmt werden kann. Schlussfolgerung: Der direkte konzentrationsabh{\"a}ngige Fluoreszenznachweis von klinisch eingesetzten Propofol-Wirkspiegeln gelingt allein in transfusionsmedizinisch aufbreiteten Blutprodukten.}, subject = {Propofol}, language = {de} } @phdthesis{Dobrawa2004, author = {Dobrawa, Rainer Anton}, title = {Synthesis and characterization of terpyridine-based fluorescent coordination polymers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10367}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Complexation properties of 2,2':6',2''-terpyridine (tpy) have been studied with a series of first row transition metal ions by UV-vis, 1H NMR and isothermal titration calorimetry and ƒ´H values for the tpy complexation processes have been determined. These studies reveal that Zn2+ is the best suited metal ion for the reversible coordination of the terpyridine ligand. Thus, supramolecular coordination polymerization of perylene bisimide fluorophores containing terpyridine functionalities have been investigated by using Zn2+ as metal ion. The formation of the dimeric complexes in the case of monotopic model comounds and coordination polymerization of ditopic functional building blocks have been confirmed by 1H NMR studies. The optical properties of dimeric and polymeric complexes have been investigated by UV-vis and fluorescence spectroscopy. The Zn2+ coordination to the terpyridine unit does not effect the advantageous fluorescence properties of perylene bisimide moieties. The reversibility of the formation of coordination polymers has been established by 1H NMR and additionally by DOSY NMR and fluorescence anisotropy measurements. Coordination polymer strands can be visualized by atomic force microscopy (AFM), which also reveals the formation of an ordered monolayer film at higher concentration. The average polymer length has been determined by AFM to 15 repeat units, which correlates well with the value estimated by 1H NMR to >10 repeat units.}, subject = {Terpyridinderivate <2}, language = {en} }