@article{MenekseMahlAlbertetal.2023, author = {Menekse, Kaan and Mahl, Magnus and Albert, Julius and Niyas, M. A. and Shoyama, Kazutaka and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Supramolecularly Engineered Bulk-Heterojunction Solar Cells with Self-Assembled Non-Fullerene Nanographene Tetraimide Acceptors}, series = {Solar RRL}, volume = {7}, journal = {Solar RRL}, number = {2}, doi = {10.1002/solr.202200895}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312099}, year = {2023}, abstract = {A series of novel imide-functionalized C\(_{64}\) nanographenes is investigated as acceptor components in organic solar cells (OSCs) in combination with donor polymer PM6. These electron-poor molecules either prevail as a monomer or self-assemble into dimers in the OSC active layer depending on the chosen imide substituents. This allows for the controlled stacking of electron-poor and electron-rich π-scaffolds to establish a novel class of non-fullerene acceptor materials to tailor the bulk-heterojunction morphology of the OSCs. The best performance is observed for derivatives that are able to self-assemble into dimers, reaching power conversion efficiencies of up to 7.1\%.}, language = {en} } @phdthesis{Mahlmeister2023, author = {Mahlmeister, Bernhard}, title = {Twisted Rylene Bisimides for Organic Solar Cells and Strong Chiroptical Response in the Near Infrared}, doi = {10.25972/OPUS-34610}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346106}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The chirality of the interlocked bay-arylated perylene motif is investigated upon its material prospect and the enhancement of its chiroptical response to the NIR spectral region. A considerable molecular library of inherently chiral perylene bisimides (PBIs) was utilized as acceptors in organic solar cells to provide decent device performances and insights into the structure-property relationship of PBI materials within a polymer blend. For the first time in the family of core-twisted PBIs, the effects of enantiopurity on the device performance was thoroughly investigated. The extraordinary structural sensitivity of CD spectroscopy served as crucial analytical tool to bridge the highly challenging gap between molecular properties and device analytics by proving the excitonic chirality of a helical PBI dimer. The chirality of this perylene motif could be further enhanced on a molecular level by both the expansion and the enhanced twisting of the π-scaffold to achieve a desirable strong chiroptical NIR response introducing a new family of twisted QBI-based nanoribbons. These achievements could be substantially further developed by expanding this molecular concept to a supramolecular level. The geometrically demanding supramolecular arrangement necessary for the efficient excitonic coupling was carefully encoded into the molecular design. Accordingly, the QBIs could form the first J-type aggregate constituting a fourfold-stranded superhelix of a rylene bisimide with strong excitonic chirality. Therefore, this thesis has highlighted the mutual corroboration of experimental and theoretical data from the molecular to the supramolecular level. It has demonstrated that for rylene bisimide dyes, the excitonic contribution to the overall chiroptical response can be designed and rationalized. This can help to pave the way for new organic functional materials to be used for chiral sensing or chiral organic light-emitting devices.}, subject = {Molek{\"u}l}, language = {en} } @article{MezaChinchaLindnerSchindleretal.2020, author = {Meza-Chincha, Ana-Lucia and Lindner, Joachim O. and Schindler, Dorothee and Schmidt, David and Krause, Ana-Maria and R{\"o}hr, Merle I. S. and Mitrić, Roland and W{\"u}rthner, Frank}, title = {Impact of substituents on molecular properties and catalytic activities of trinuclear Ru macrocycles in water oxidation}, issn = {2041-6539}, doi = {10.1039/d0sc01097a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204653}, year = {2020}, abstract = {Herein we report a broad series of new trinuclear supramolecular Ru(bda) macrocycles bearing different substituents at the axial or equatorial ligands which enabled investigation of substituent effects on the catalytic activities in chemical and photocatalytic water oxidation. Our detailed investigations revealed that the activities of these functionalized macrocycles in water oxidation are significantly affected by the position at which the substituents were introduced. Interestingly, this effect could not be explained based on the redox properties of the catalysts since these are not markedly influenced by the functionalization of the ligands. Instead, detailed investigations by X-ray crystal structure analysis and theoretical simulations showed that conformational changes imparted by the substituents are responsible for the variation of catalytic activities of the Ru macrocycles. For the first time, macrocyclic structure of this class of water oxidation catalysts is unequivocally confirmed and experimental indication for a hydrogen-bonded water network present in the cavity of the macrocycles is provided by crystal structure analysis. We ascribe the high catalytic efficiency of our Ru(bda) macrocycles to cooperative proton abstractions facilitated by such a network of preorganized water molecules in their cavity, which is reminiscent of catalytic activities of enzymes at active sites.}, language = {en} } @article{HechtLeowanawatGerlachetal.2020, author = {Hecht, Markus and Leowanawat, Pawaret and Gerlach, Tabea and Stepanenko, Vladimir and Stolte, Matthias and Lehmann, Matthias and W{\"u}rthner, Frank}, title = {Self-Sorting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetra-Bay-Acyloxy Perylene Bisimide}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {39}, doi = {10.1002/anie.202006744}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224586}, pages = {17084 -- 17090}, year = {2020}, abstract = {A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self-assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen-bond-directed self-assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid-crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo- or heterochiral self-assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self-sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self-assemblies proceeds by dissociation via the monomeric state.}, language = {en} } @article{SyamalaWuerthner2020, author = {Syamala, Pradeep P. N. and W{\"u}rthner, Frank}, title = {Modulation of the Self-Assembly of π-Amphiphiles in Water from Enthalpy- to Entropy-Driven by Enwrapping Substituents}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {38}, doi = {10.1002/chem.202000995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218107}, pages = {8426 -- 8434}, year = {2020}, abstract = {Depending on the connectivity of solubilizing oligoethylene glycol (OEG) side chains to the π-cores of amphiphilic naphthalene and perylene bisimide dyes, self-assembly in water occurs either upon heating or cooling. Herein, we show that this effect originates from differences in the enwrapping capability of the π-cores by the OEG chains. Rylene bisimides bearing phenyl substituents with three OEG chains attached directly to the hydrophobic π-cores are strongly sequestered by the OEG chains. These molecules self-assemble at elevated temperatures in an entropy-driven process according to temperature- and concentration-dependent UV/Vis spectroscopy and calorimetric dilution studies. In contrast, for rylene bisimides in which phenyl substituents with three OEG chains are attached via a methylene spacer, leading to much weaker sequestration, self-assembly originates upon cooling in an enthalpy-driven process. Our explanation for this controversial behavior is that the aggregation in the latter case is dictated by the release of "high energy water" from the hydrophobic π-surfaces as well as dispersion interactions between the π-scaffolds which drive the self-assembly in an enthalpically driven process. In contrast, for the former case we suggest that in addition to the conventional explanation of a dehydration of hydrogen-bonded water molecules from OEG units it is in particular the increase in conformational entropy of back-folded OEG side chains upon aggregation that provides the pronounced gain in entropy that drives the aggregation process. Thus, our studies revealed that a subtle change in the attachment of solubilizing substituents can switch the thermodynamic signature for the self-assembly of amphiphilic dyes in water from enthalpy- to entropy-driven.}, language = {en} } @article{GrandeSoberatsHerbstetal.2018, author = {Grande, Vincenzo and Soberats, Bartolome and Herbst, Stefanie and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Hydrogen-bonded perylene bisimide J-aggregate aqua material}, volume = {9}, issn = {2041-6539}, doi = {10.1039/C8SC02409J}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204715}, pages = {6904-6911}, year = {2018}, abstract = {A new twelvefold methoxy-triethyleneglycol-jacketed tetraphenoxy-perylene bisimide (MEG-PBI) amphiphile was synthesized that self-assembles into two types of supramolecular aggregates in water: red-coloured aggregates of low order and with weak exciton coupling among the PBIs and blue-coloured strongly coupled J-aggregates consisting of a highly ordered hydrogen-bonded triple helix of PBIs. At room temperature this PBI is miscible with water at any proportions which enables the development of robust dye aggregates in solution, in hydrogel states and in lyotropic liquid crystalline states. In the presence of 60-95 wt\% water, self-standing coloured hydrogels exhibit colour changes from red to blue accompanied by a fluorescence light-up in the far-red region upon heating in the range of 30-50 °C. This phenomenon is triggered by an entropically driven temperature-induced hydrogen-bond-directed slipped stacking arrangement of the MEG-PBI chromophores within structurally well-defined J-aggregates. This versatile aqua material is the first example of a stable PBI J-aggregate in water. We anticipate that this study will open a new avenue for the development of biocompatible functional materials based on self-assembled dyes and inspire the construction of other hydrogen-bonded supramolecular materials in the highly competitive solvent water.}, language = {en} } @phdthesis{Rest2015, author = {Rest, Christina}, title = {Self-assembly of amphiphilic oligo(phenylene ethynylene)-based (bi)pyridine ligands and their Pt(II) and Pd(II) complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The presented work in the field of supramolecular chemistry describes the synthesis and detailed investigation of (bi)pyridine-based oligo(phenylene ethynylene) (OPE) amphiphiles, decorated with terminal glycol chains. The metal-ligating property of these molecules could be exploited to coordinate to Pd(II) and Pt(II) metal ions, respectively, resulting in the creation of novel metallosupramolecular π-amphiphiles of square-planar geometry. The focus of the presented studies is on the self-assembly behaviour of the OPE ligands and their corresponding metal complexes in polar and aqueous environment. In this way, the underlying aggregation mechanism (isodesmic or cooperative) is revealed and the influence of various factors on the self-assembly process in supramolecular systems is elucidated. In this regard, the effect of the molecular design of the ligand, the coordination to a metal centre as well as the surrounding medium, the pH value and temperature is investigated.}, subject = {Supramolekulare Chemie}, language = {en} } @article{RestMayoralFernandez2013, author = {Rest, Christina and Mayoral, Mar{\´i}a Jos{\´e} and Fern{\´a}ndez, Gustavo}, title = {Aqueous Self-Sorting in Extended Supramolecular Aggregates}, series = {International Journal of Molecular Sciences}, volume = {14}, journal = {International Journal of Molecular Sciences}, number = {1}, doi = {10.3390/ijms14011541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129435}, pages = {1541-1565}, year = {2013}, abstract = {Self-organization and self-sorting processes are responsible for the regulation and control of the vast majority of biological processes that eventually sustain life on our planet. Attempts to unveil the complexity of these systems have been devoted to the investigation of the binding processes between artificial molecules, complexes or aggregates within multicomponent mixtures, which has facilitated the emergence of the field of self-sorting in the last decade. Since, artificial systems involving discrete supramolecular structures, extended supramolecular aggregates or gel-phase materials in organic solvents or—to a lesser extent—in water have been investigated. In this review, we have collected diverse strategies employed in recent years to construct extended supramolecular aggregates in water upon self-sorting of small synthetic molecules. We have made particular emphasis on co-assembly processes in binary mixtures leading to supramolecular structures of remarkable complexity and the influence of different external variables such as solvent and concentration to direct recognition or discrimination processes between these species. The comprehension of such recognition phenomena will be crucial for the organization and evolution of complex matter.}, language = {en} } @phdthesis{Shao2012, author = {Shao, Changzhun}, title = {Programming Self-assembly: Formation of Discrete Perylene Bisimide Aggregates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69298}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The objective of this thesis focuses on the development of strategies for precise control of perylene bisimide (PBI) self-assembly and the in-depth elucidation of structural and optical features of discrete PBI aggregates by means of NMR and UV/Vis spectroscopy. The strategy for discrete dimer formation of PBIs is based on delicate steric control that distinguishes the two facets of the central perylene surface. The strategy applied in this thesis for accessing discrete PBI quadruple and further oligomeric stacks relies on backbone-directed PBI self-assembly. For this purpose, two tweezer-like PBI dyads bearing the respective rigid backbones, diphenylacetylene (DPA) and diphenylbutydiyne (DPB), were synthesized. The distinct aggregation behavior of these structurally similar PBI dyads can be ascribed to the intramolecular distance between the two PBI chromophores imparted by the DPA and DPB spacers.}, subject = {Farbstoff}, language = {en} } @phdthesis{Schmidt2011, author = {Schmidt, Ralf}, title = {Hamilton-Receptor-Mediated Self-Assembly of Merocyanine Dyes into Supramolecular Polymers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Selbstorganisation von Merocyaninfarbstoffen zu supramolekularen Polymeren wurde untersucht. Dabei konnte die Anordnung der hoch dipolaren Farbstoffe durch die Verwendung von verschiedenen Kombinationen von Wasserstoffbr{\"u}ckenbindungsmotiven und dipolarer Aggregation der Chromophore gesteuert.}, subject = {Selbstorganisation}, language = {en} } @phdthesis{Li2009, author = {Li, Xueqing}, title = {Hydrogen Bond-directed Self-assembly of Perylene Bisimide Organogelators}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-43727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Perylene bisimide (PBI) dyes are a widely used class of industrial pigments, and currently have gained significant importance for organic-based electronic and optical devices. Structural modification at the PBI core results in changes of the optical and electronic properties, which enable tailored functions. Moreover, the aggregation behavior of PBIs is alterable and controllable to achieve new materials, among which organogels are of particular interest because of their potential for applications as supramolecular soft materials. In this work, new PBI-based organic gelators were designed, synthesized, and characterized, and the aggregation behaviors under different conditions were intensively studied by various spectroscopic and microscopic methods. In chapter 2, a brief overview is given on the structural and functional features of organogel systems. The definition, formation and reversibility of organogels are introduced. Some examples on dye based organogel are selected, among which PBI-based organogelators reported so far are especially emphasized. Some basic knowledges of supramolecular chirality are also overviewed such as characterization, amplification, and symmetry breaking of the chiral aggregates. According to our former experiences, PBIs tend to form aggregates because the planer aromatic cores interact with one another by pi-pi interaction. In chapter 3, a new PBI molecule is introduced which possesses amide groups between the conjugated core and periphery alkyl chains. It is found that well oriented aggregates are formed by hydrogen bonding and the pi-pi interaction of the cores. These interactions enable the aggregates to grow in one-dimension forming very long fibers, and these fibers further intercross to 3D network structures, e.g., organogels. In comparison to the very few PBI-based gelators reported before, one advantage of this gelator is that, it is more versatile and can gelate a wide range of organic solvents. Moreover, the well-organized fibers that are composed of extended \&\#960;-stacks provide efficient pathways for n-type charge carriers. Interestingly, AFM studies reveal that the PBI molecules form well-defined helical fibers in toluene. Both left-handed (M) and right-handed (P) helicities can be observed without any preference for one handedness because the building block is intrinsically achiral. In chapter 4, we tried to influence the M/P enantiomeric ratio by applying external forces. For example, we utilized chiral solvents to generate chiral aggregates with a preferential handedness. AFM analysis of the helices showed that a enantiomeric ratio of about 60: 40 can be achieved by aggregation in chiral solvents R- or S-limonene. Moreover, the long aggregated fibres can align at macroscopic level in vortex flows upon rotary stirring In chapter 5, bulky tetra-phenoxy groups are introduced in the bay area of the PBI gelator. The conjugated core of the new molecule is now distorted because of the steric hindrance. UV/Vis studies reveal a J-type aggregation in apolar solvents like MCH due to intermolecular pi-pi-stacking and hydrogen-bonding interactions. Microscopic studies reveal formation of columnar aggregates in apolar solvent MCH, thus this molecule lacks the ability to form gels in this solvent, but form highly fluorescent lyotropic mesophases at higher concentration. On the other hand, in polar solvents like acetone and dioxane, participation of the solvent molecules in hydrogen bonding significantly reduced the aggregation propensity but enforced the gel formation. The outstanding fluorescence properties of the dye in both J-aggregated viscous lyotropic mesophases and bulk gel phases suggest very promising applications in photonics, photovoltaics, security printing, or as fluorescent sensors. In chapter 6, we did some studies on combining PBI molecules with inorganic gold nanorods. Gold nanorods were synthesized photochemically. By virtue of the thioacetate functionalized PBIs, the rods were connected end to end to form gold nanochains, which were characterized by absorption spectra and TEM measurement. Such chromophore-nanorod hybrids might be applied to guide electromagnetic radiation based on optical antenna technology.}, subject = {Perylenderivate}, language = {en} } @phdthesis{Rehm2008, author = {Rehm, Thomas Helge}, title = {A Guide to Supramolecular Assemblies in Polar Solutions - From Nanometre-Sized Cyclic Dimers to Large Vesicular Structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28359}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {This PhD thesis introduced several concepts for the construction of new supramolecular assem-blies in polar solvents. Although the building blocks differ in their binding mode and association strength they follow the same principle: one main driving force for the self-assembly in polar solutions in combination with one texturing force. The main self-assembly process is based on the mutual interaction of hydrogen-bond enforced ion pairs which deliver the association energy needed for stable, supramolecular structures even in polar solvents. The texturing force itself is represented by the linkers between the zwitterionic building blocks or parts of them. The different length and functionalization of the linkers have a tremendous influence on the mode of self-assembly leading to cyclic dimers, vesicles, layers or solid spheres. Hence, this principle is suitable for the construction of programmable monomers. Since the derivatisation of the main binding motive is rather simple it offers a great number of new and undoubtedly fascinating structures with potential applications in material and biomimetic science.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Huber2007, author = {Huber, Valerie}, title = {Selbstorganisation von semisynthetischen Zinkchlorinen zu biomimetischen Lichtsammelsystemen und definierten Nanostrukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24517}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Selbstorganisation von Zinkchlorin-Farbstoffen, welche sich strukturell von Chlorophyllen ableiten. Im Gegensatz zu allen anderen bakteriellen und pflanzlichen Lichtsammelpigmenten ist es den Bakteriochlorophyllen c, d und e der Lichtsammelsysteme gr{\"u}ner phototropher Bakterien m{\"o}glich, allein durch nichtkovalente Wechselwirkungen zwischen den Farbstoff-Molek{\"u}len, ohne die Beteiligung von Proteinen, r{\"o}hrenf{\"o}rmige Antennensysteme auszubilden, welche die am dichtest gepackten und effizientesten Lichtsammelsysteme in der Natur darstellen. Um einen Betrag zur Aufkl{\"a}rung dieser biologisch wichtigen Aggregate zu leisten, wurden im ersten Teil dieser Arbeit Zinkchlorine als Modellverbindungen f{\"u}r BChl c hergestellt. Mit den neu synthetisierten Zinkchlorinen ist es gelungen, Modellsysteme der nat{\"u}rlichen BChl-Selbstorganisate herzustellen, welche sich im Gegensatz zu den bisher in der Literatur beschriebenen Zinkchlorin-Aggregaten durch eine gute und dauerhafte L{\"o}slichkeit auszeichnen. Diese Eigenschaft erlaubte es sowohl spektroskopische als auch mikroskopische Untersuchungen zur Aufkl{\"a}rung der Aggregatstruktur durchzuf{\"u}hren. Durch Rasterkraftmikroskopie an den Zinkchlorin Aggregaten konnte erstmals ein mikroskopischer Beweis der stabf{\"o}rmigen Struktur von Aggregaten dieser Substanzklasse erhalten werden. Der zweite Teil dieser Arbeit besch{\"a}ftigt sich mit Zinkchlorinen, denen aufgrund einer methylierten 31-Hydroxy-Gruppe die F{\"a}higkeit zur R{\"o}hrenbildung fehlt, die aber durch Koordinationsbindungen und p-p-Wechselwirkungen weiterhin Stapel bilden k{\"o}nnen. Temperaturabh{\"a}ngige UV/Vis- und CD-spektroskopische Studien offenbarten die reversible Bildung von l{\"o}slichen, chiralen Zinkchlorin-Stapelaggregaten. Rasterkraft- und rastertunnelmikroskopische Untersuchungen zeigen die Bildung von zwei Typen p-gestapelter Aggregate auf hoch geordnetem Graphit.}, subject = {Farbstoff}, language = {de} } @phdthesis{Roeger2007, author = {R{\"o}ger, Cornelia}, title = {Bioinspired Light-Harvesting Zinc Chlorin Rod Aggregates Powered by Peripheral Chromophores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26760}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Artificial light-harvesting (LH) systems have been obtained by self-assembly of naphthalene diimide-functionalized zinc chlorin dyads and triad in nonpolar, aprotic solvents. UV-vis, CD, and steady-state emission spectroscopy as well as atomic force microscopy showed that rod-like structures are formed by excitonic interactions of zinc chlorin units, while the appended naphthalene diimide dyes do not aggregate at the periphery of the cylinders. In all cases, photoexcitation of the enveloping naphthalene diimides at 540 and 620 nm, respectively, was followed by highly efficient energy-transfer processes to the inner zinc chlorin backbone, as revealed by time-resolved fluorescence spectroscopy on the picosecond time-scale. As a consequence, the LH efficiencies of zinc chlorin rod aggregates were increased by up to 63\%. The effective utilization of solar energy recommends these biomimetic systems for an application in electronic materials on the nanoscale.}, subject = {Farbstoff}, language = {en} } @phdthesis{Chen2006, author = {Chen, Zhijian}, title = {pi-Stacks Based on Self-Assembled Perylene Bisimides : Structural, Optical, and Electronic Properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19940}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {As a traditional industrial pigment, perylene bisimide (PBI) dyes have found wide-spread applications. In addition, PBI dyes have been considered as versatile and promising functional materials for organic-based electronic and optic devices, such as transistors and solar cells. For these novel demands, the control of self-organization of this type of dye and the investigation of the relationship between the supramolecular structure and the relevant optical and electronic properties is of great importance. The objective of this thesis focuses on gaining a better understanding of structural and functional properties of pi-stacks based on self-assembling PBIs. Studies include the synthesis and characterization of new functional PBI dyes, their aggregation in solution, in liquid crystalline state and on surfaces, and their fluorescence and charge transport properties. An overview of the formation, thermodynamics and structures of pi-stacks of functional pi- conjugated molecules in solution and in liquid crystalline phases is given in Chapter 2. Chapters 3 and 4 deal with the pi-pi aggregates of new, highly fluorescent PBIs without core-substituents. In Chapter 3, the self-assembly of a PBI with tridodecylphenyl substituents at imide N atoms both in solution and condensed phase has been studied in great detail. In condensed state, the dye exhibits a hexagonal columnar liquid crystalline (LC) phase as confirmed by DSC, OPM and X-ray diffraction analysis. The columnar stacking of this dye has been further confirmed by atomic force microscopy (AFM) where single columns could be well resolved The charge transport properties this dye have been investigated by pulse radiolysis-time resolved microwave conductivity (PR-TRMC) measurements. To shed more light on the nature of the pi-pi interaction of the unsubstituted PBIs, solvent depend aggregation properties have been investigated in Chapter 4. The studies are further extended from core-unsubstituted PBIs to core-substituted ones (Chapter 5 and 6). In Chapter 5, a series of highly soluble and fluorescent core-twisted PBIs that bear the same trialkylphenyl groups at the imide positions but different bay-substituents and were synthesized. These compounds are characterized by distortions of the perylene planes with dihedral angles in the range of 15-37° according to crystallographic data and molecular modeling studies. In contrast to the extended oligomeric aggregates formed for planar unsubstituted PBIs, this family of dyes formed discrete pi-pi-stacked dimers in apolar methylcyclohexane as concentration-dependent UV/Vis measurements and VPO analysis revealed. The Gibbs free energy of dimerization can be correlated with the twist angles of the dyes linearly. In condensed state, several of these PBIs form luminescent rectangular or hexagonal columnar liquid crystalline phases with low isotropization temperatures. The core-twisting effect on semiconducting properties has been examined in Chapter 6. In this chapter, a comparative study of the electrochemical and the charge transport properties of a series of non-substituted and chlorine-functionalized PBIs was performed. While Chapters 3-6 focus on one-component dye systems, Chapter 7 explored the possibility of a supramolecular engineering of co-aggregates formed by hydrogen-bonded 2:1 and 1:1 complex of oligo(p-phenylene vinylene)s (OPVs) and PBIs. Covalently linked donor-acceptor dye arrays have been prepared for comparison. Concentration and temperature-dependent UV/Vis spectroscopy revealed all hydrogen-bonded and covalent systems form well-ordered J-type aggregates in methylcyclohexane. With these hydrogen-bonded OPV-PBI complexes, fibers containing p-type and n-type molecules can be prepared on the nano-scale (1-20 nm). For the 2:1 OPV-PBI hydrogenbonded arrays hierarchically assembled chiral superstructures consisting of left-handed helical pi-pi co-aggregates (CD spectroscopy) of the two dyes that further assemble into right-handed nanometer-scale supercoils in the solid state (AFM study) have been observed. All of these well-defined OPV-PBI assemblies presented here exhibit photoinduced electron transfer on sub-ps timescale, while the electron recombination differs for different systems.Thus, it was suggested that such assemblies of p- and n-type semiconductors might serve as valuable nanoscopic functional units for organic electronics.}, subject = {Perylenderivate}, language = {en} }