@phdthesis{Schmidt2021, author = {Schmidt, Stefanie}, title = {Cartilage Tissue Engineering - Comparison of Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells in Agarose and Hyaluronic Acid-Based Hydrogels}, doi = {10.25972/OPUS-25171}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251719}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Articular cartilage damage caused by sports accidents, trauma or gradual wear and tear can lead to degeneration and the development of osteoarthritis because cartilage tissue has only limited capacity for intrinsic healing. Osteoarthritis causes reduction of mobility and chronic pain and is one of the leading causes of disability in the elderly population. Current clinical treatment options can reduce pain and restore mobility for some time, but the formed repair tissue has mostly inferior functionality compared to healthy articular cartilage and does not last long-term. Articular cartilage tissue engineering is a promising approach for the improvement of the quality of cartilage repair tissue and regeneration. In this thesis, a promising new cell type for articular cartilage tissue engineering, the so-called articular cartilage progenitor cell (ACPC), was investigated for the first time in the two different hydrogels agarose and HA-SH/P(AGE-co-G) in comparison to mesenchymal stromal cells (MSCs). In agarose, ACPCs´ and MSCs´ chondrogenic capacity was investigated under normoxic (21 \% oxygen) and hypoxic (2 \% oxygen) conditions in monoculture constructs and in zonally layered co-culture constructs with ACPCs in the upper layer and MSCs in the lower layer. In the newly developed hyaluronic acid (HA)-based hydrogel HA-SH/P(AGE-co-G), chondrogenesis of ACPCs and MSCs was also evaluated in monoculture constructs and in zonally layered co-culture constructs like in agarose hydrogel. Additionally, the contribution of the bioactive molecule hyaluronic acid to chondrogenic gene expression of MSCs was investigated in 2D monolayer, 3D pellet and HA-SH hydrogel culture. It was shown that both ACPCs and MSCs could chondrogenically differentiate in agarose and HA-SH/P(AGE-co-G) hydrogels. In agarose hydrogel, ACPCs produced a more articular cartilage-like tissue than MSCs that contained more glycosaminoglycan (GAG), less type I collagen and only little alkaline phosphatase (ALP) activity. Hypoxic conditions did not increase extracellular matrix (ECM) production of ACPCs and MSCs significantly but improved the quality of the neo-cartilage tissue produced by MSCs. The creation of zonal agarose constructs with ACPCs in the upper layer and MSCs in the lower layer led to an ECM production in zonal hydrogels that lay in general in between the ECM production of non-zonal ACPC and MSC hydrogels. Even though zonal co-culture of ACPCs and MSCs did not increase ECM production, the two cell types influenced each other and, for example, modulated the staining intensities of type II and type I collagen in comparison to non-zonal constructs under normoxic and hypoxic conditions. In HA-SH/P(AGE-co-G) hydrogel, MSCs produced more ECM than ACPCs, but the ECM was limited to the pericellular region for both cell types. Zonal HASH/P(AGE-co-G) hydrogels resulted in a native-like zonal distribution of ECM as MSCs in the lower zone produced more ECM than ACPCs in the upper zone. It appeared that chondrogenesis of ACPCs was supported by hydrogels without biological attachment sites such as agarose, and that chondrogenesis of MSCs benefited from hydrogels with biological cues like HA. As HA is an attractive material for cartilage tissue engineering, and the HA-based hydrogel HA-SH/P(AGE-co-G) appeared to be beneficial for MSC chondrogenic differentiation, the contribution of HA to chondrogenic gene expression of MSCs was investigated. An upregulation of chondrogenic gene expression was found in 2D monolayer and 3D pellet culture of MSCs in response to HA supplementation, while gene expression of osteogenic and adipogenic transcription factors was not upregulated. MSCs, encapsulated in a HA-based hydrogel, showed upregulation of gene expression for chondrogenic, osteogenic and adipogenic differentiation markers as well as for stemness markers. In a 3D bioprinting process, using the HA-based hydrogel, gene expression levels of MSCs mostly did not change. Nevertheless, expression of three tested genes (COL2A1, SOX2, CD168) was downregulated in printed in comparison to cast constructs, underscoring the importance of closely monitoring cellular behaviour during and after the printing process. In summary, it was confirmed that ACPCs are a promising cell source for articular cartilage engineering with advantages over MSCs when they were cultured in a suitable hydrogel like agarose. The performance of the cells was strongly dependent on the hydrogel environment they were cultured in. The different chondrogenic performance of ACPCs and MSCs in agarose and HA-SH/P(AGE-co-G) hydrogels highlighted the importance of choosing suitable hydrogels for the different cell types used in articular cartilage tissue engineering. Hydrogels with high polymer content, such as the investigated HA-SH/P(AGE-co-G) hydrogels, can limit ECM distribution to the pericellular area and should be developed further towards less polymer content, leading to more homogenous ECM distribution of the cultured cells. The influence of HA on chondrogenic gene expression and on the balance between differentiation and maintenance of stemness in MSCs was demonstrated. More studies should be performed in the future to further elucidate the signalling functions of HA and the effects of 3D bioprinting in HA-based hydrogels. Taken together, the results of this thesis expand the knowledge in the area of articular cartilage engineering with regard to the rational combination of cell types and hydrogel materials and open up new possible approaches to the regeneration of articular cartilage tissue.}, subject = {Hyaliner Knorpel}, language = {en} } @phdthesis{Wagenbrenner2021, author = {Wagenbrenner, Mike Helmut}, title = {In vitro-Charakterisierung mesenchymaler Stromazellen aus dem menschlichen H{\"u}ftgelenk}, doi = {10.25972/OPUS-23711}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237110}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In dieser Arbeit konnte erstmals gezeigt werden, dass plastik-adh{\"a}rent wachsende, multipotente Vorl{\"a}uferzellen, die eine f{\"u}r MSCs charakteristische Kombination von Oberfl{\"a}chenantigenen tragen, aus allen vier untersuchten Geweben des arthrotischen H{\"u}ftgelenks isoliert werden konnten. MSC-{\"a}hnliche Zellen k{\"o}nnen somit nicht nur in der Spongiosa und im Gelenkknorpel, sondern auch in der anterioren Gelenkkapsel und dem Ligamentum capitis femoris (LCF) des arthrotisch ver{\"a}nderten menschlichen H{\"u}ftgelenks nachgewiesen werden. Die FACS Analyse der Oberfl{\"a}chenantigene auf Zellen, die aus den vier unterschiedlichen Geweben eines beispielhaft gew{\"a}hlten Spenders isoliert wurden, zeigte eine deutliche Expression der Antigene CD44, CD73, CD90 und CD105. Unabh{\"a}ngig vom Nativgewebe zeigten somit alle untersuchten Zellen ein f{\"u}r MSCs charakteristisches, aber nicht spezifisches Profil an Antigenen auf ihrer Oberfl{\"a}che. Eine {\"U}bereinstimmung mit den ISCT Kriterien f{\"u}r MSCs war aufgrund der fehlenden Kontrolle h{\"a}matopoetischer Marker nicht m{\"o}glich. Die multipotente Differenzierung der isolierten Zellen erfolgte mithilfe spezifischer Differenzierungsmedien in Monolayer-Kulturen oder f{\"u}r die chondrogene Differenzierung in dreidimensionalen Pellet-Kulturen. Nach 21 Tagen konnten in allen differenzierten Kulturen histologisch und immunhistochemisch klare Zeichen der Osteo- und Adipogenese detektiert werden, w{\"a}hrend die Auswertung spezifischer Markergene eine klare Steigerung der Expression dieser im Vergleich zu den Negativkontrollen zeigte. Histologische und immunhistochemische Auswertungen best{\"a}tigten auch eine erfolgreiche chondrogene Differenzierung der Zell-Pellets aus Spongiosa, Knorpel und Kapsel. Lediglich in den chondrogen differenzierten Zell-Pellets aus dem LCF konnte immunhistochemisch keine Bildung des knorpelspezifischen Matrixproteins Col II nachgewiesen werden. Mikroskopisch zeigten vor allem die differenzierten MSC-Pellets aus Spongiosa und Knorpel morphologisch eine starke {\"A}hnlichkeit zu hyalinem Knorpelgewebe. Trotz dieser Abstufungen zeigten sich f{\"u}r die relative Expression der chondrogenen Markergene AGG, Col II und Sox-9 keine signifikanten Unterschiede zwischen den differenzierten MSC-Kulturen der vier unterschiedlichen Nativgewebe. Ein positiver Nachweis des Markers Col X wies nach 27 Tagen sowohl in differenzierten als auch in undifferenzierten Pellet-Kulturen auf eine leichte chondrogene Hypertrophie hin. Zusammenfassend zeigten sich keine signifikanten Unterschiede im Hinblick auf das osteogene und adipogene Differenzierungspotential aller untersuchten Zellen. W{\"a}hrend das chondrogene Differenzierungspotential der Zellen aus Spongiosa, Knorpel und Kapsel sich aus histologischer und immunhistochemischer Sicht {\"a}hnelte, zeigten Pellets aus dem LCF ein schw{\"a}cheres chondrogenes Differenzierungspotential in vitro. Obwohl somit erstmals MSC-{\"a}hnliche Zellen aus dem LCF und Gewebsproben, die neben dem Stratum synoviale auch das Stratum fibrosum der H{\"u}ftgelenkskapsel beinhalteten, charakterisiert wurden, sind weitere wissenschaftliche Arbeiten notwendig, um das multipotente Differenzierungspotential dieser Zellen zu optimieren.}, subject = {H{\"u}ftgelenk}, language = {de} }