@phdthesis{Huang2022, author = {Huang, Mingming}, title = {C-S Bond Borylation and Diborylation of Alkyl Halides, Tosylates, and Alcohols}, doi = {10.25972/OPUS-25718}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Alkylboronates play an important role in synthetic chemistry, materials science and drug discovery. They are easy to handle due to their good air and moisture stability, and can be readily employed to form carbon-carbon and carbon-heteroatom bonds and can be converted to various functional groups under mild reaction conditions. Compared with conventional groups, such as aryl (pseudo)halides or alcohols, organosulfur compounds represent an alternative and complimentary substitute in coupling reactions. The construction of C-B bond from C-SO bond of aryl sulfoxide is presented in Chapter 2. The selective cleavage of either alkyl(C)-sulfonyl or aryl(C)-sulfonyl bonds of an aryl alkyl sulfone via Cu-free or Cu-mediated processes generates the corresponding boronate esters, which are presented in Chapter 3 and Chapter 4. 1,2-Bis(boronate esters) are emerging as important synthetic intermediates for preparing 1,2-difunctional compounds. In addition, the boryl moieties in different environments in a 1,2-bis(boronate ester) can be differentiated and converted selectively, allowing the synthesis of a wide variety of complex molecules. A direct and selective diboration of C-X and C-O bonds for the preparation of 1,2-bis(boronate esters) is presented in Chapter 5.}, language = {en} }