@phdthesis{Elsner2022, author = {Elsner, Clara Dorothea}, title = {Ultrastructural analysis of biogenesis and release of endothelial extracellular vesicles}, doi = {10.25972/OPUS-28852}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Extracellular vesicle (EV)-mediated intercellular communication through exosomes, microvesicles (MVs) and apoptotic bodies has been shown to be implicated in various physiological as well as pathological processes such as the development and progression of atherosclerosis. While the cellular machinery controlling EV formation and composition has been studied extensively, little is known about the underlying morphological processes. This study focuses on a detailed ultrastructural analysis of the different steps of EV formation and release in Myocardial Endothelial (MyEnd) and Aortic Endothelial (AoEnd) cells cultured under serum starvation and inflammatory stimulation with TNF-α. Detailed morphological analyses were conducted applying and comparing different high- resolution light and electron microscopic methods. In this study, we could depict all steps of MV biogenesis named in literature. However, during the study of exosome biogenesis, we discovered a yet undescribed process: Instead of a direct fusion with the plasma membrane, multivesicular bodies were incorporated into a new distinct cellular compartment bound by fenestrated endothelium first. This may present a novel step in exosome biogenesis and warrants further study. Regarding the conditions of cell cultivation, we observed that the commonly used serum starvation causes MyEnd cells, but not AoEnd cells, to enter apoptosis after 48 hours. When preparing functional EV studies, we therefore recommend assessing the morphological condition of the serum-starved cells at different cultivation points first. When evaluating MV production, a statistical analysis showed that the more time AoEnd cells spent in cultivation under serum starvation, the higher the percentage of MV producing cells. However, additional TNF-α stimulation induced a significantly higher MV production than serum starvation alone. Lastly, our results show that TNF-α stimulation of AoEnd cells in vitro leads to the upregulation of CD44, an adhesion molecule critical in the early stages of atherosclerosis. CD44 was then depicted on the surface of generated MVs and exosomes. We conclude that under inflammatory conditions, EVs can mediate the transfer of CD44 from endothelial cells to target cells. This could be a novel mechanism by which MVs contribute to the development and progression of atherosclerotic disease and should be clarified by further studies.}, subject = {Vesikel}, language = {en} }