@phdthesis{Henninger2022, author = {Henninger, Markus}, title = {Funktion der zentralen metabolischen Kinase SnRK1 und von ihr abh{\"a}ngiger Transkriptionsfaktoren bei der Mobilisierung von Speicherstoffen w{\"a}hrend der \(Arabidopsis\) Keimlingsentwicklung}, doi = {10.25972/OPUS-21430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214305}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Pflanzen m{\"u}ssen sich w{\"a}hrend der Samenkeimung und Keimlingsentwicklung {\"u}ber eingelagerte Speicherstoffe heterotroph versorgen, bis sie, nach Etablierung ihres Photosyntheseapparats, einen autotrophen Lebensstil f{\"u}hren k{\"o}nnen. Diese Arbeit geht von der Hypothese aus, dass der evolution{\"a}r konservierten zentral-metabolischen Kinase Snf1-RELATED PROTEIN KINASE 1 (SnRK1) eine besondere Rolle bei der Mobilisierung von Speicherstoffen w{\"a}hrend der Keimlingsentwicklung zukommt. W{\"a}hrend die Bedeutung von SnRK1 als zentraler Regulator katabolischer Prozesse unter Energiemangel- und Stresssituationen bereits gezeigt wurde, war die Funktion von SnRK1 im Zusammenhang mit der Samenkeimung weitgehend ungekl{\"a}rt. In dieser Arbeit konnte erstmals gezeigt werden, dass SnRK1 in Arabidopsis die Mobilisierung und Degradation von Speicherstoffen, insbesondere von Triacylglyceride (TAGs), Samenspeicherproteinen und Aminos{\"a}uren, steuert. Sowohl Studien zur Lokalisation von SnRK1:GFP-Fusionsproteinen als auch Kinaseaktivit{\"a}tsassays unterst{\"u}tzen eine m{\"o}gliche Funktion von SnRK1 w{\"a}hrend der Keimlingsentwicklung. Eine induzierbare snrk1-knockdown Mutante zeigt neben einem eingeschr{\"a}nkten Wurzel- und Hypokotylwachstum auch keine Ausbildung eines Photosyntheseapparats, was die zentrale Rolle der SnRK1 in diesem fr{\"u}hen Entwicklungsstadium untermauert. Durch F{\"u}tterungsexperimente mit Glukose konnte der Ph{\"a}notyp einer snrk1 -Mutante in Keimlingen gerettet werden. Dies zeigt, dass der metabolische Block durch externe Gabe von Kohlenhydraten umgangen werden kann. Die zentrale Funktion von SnRK1 ist folgich der Abbau von Speicherstoffen und keine allgemeine Deregulation des pflanzlichen Stoffwechsels. Durch massenspektrometrische Untersuchungen von Keimlingen des Wildtyps und der snrk1-Mutante konnte gezeigt werden, dass TAGs in der Mutante in der sp{\"a}- ten Keimlingsentwicklung ab Tag 4 langsamer abgebaut werden als im Wildtyp. Ebenso werden Samenspeicherproteine in der Mutante langsamer degradiert, wodurch die Verf{\"u}gbarkeit von freien Aminos{\"a}uren in geringer ist. Entgegen der allgemeinen Annahme konnte gezeigt werden, dass w{\"a}hrend der Keimlingsentwicklung zumindest in Arabidopsis, einer {\"o}lhaltigen Pflanze, zun{\"a}chst Kohlenhydrate in Form von Saccharose abgebaut werden, bevor die Degradation von TAGs und Aminos{\"a}uren beginnt. Diese Abbauprodukte k{\"o}nnen dann der Glukoneogenese zugef{\"u}hrt werden um daraus Glukose herzustellen. Mittels Transkriptom-Analysen konnten zentrale SnRK1-abh{\"a}ngige Gene in der Speicherstoffmobilisierung von TAG, beispielsweise PEROXISOMAL NAD-MALATE DEHYDROGENASE 2 (PMDH2) und ACYL-CoA-OXIDASE 4 (ACX4), und Aminos{\"a}uren identifiziert werden. Somit wurde ein Mechanismus der SnRK1-abh{\"a}ngigen Genregulation w{\"a}hrend der Samenkeimung in Arabidopsis gefunden. Bei der Degradation von Aminos{\"a}uren wird die cytosolische PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK), ein Schl{\"u}sselenzym beim Abbau bestimmter Aminos{\"a}uren und bei der Glukoneogenese, SnRK1-abh{\"a}ngig transkriptionell reguliert. Durch Koregulation konnte der Transkriptionsfaktor bZIP63 (BASIC LEUCINE ZIPPER 63) gefunden werden, dessen Transkription ebenfalls SnRK1-abh{\"a}ngig reguliert wird. Außerdem konnte die Transkription von cyPPDK in bzip63-Mutanten nur noch sehr schwach induziert werden. In Protoplasten konnte der cyPPDK-Promotor durch Aktivierungsexperimente mit bZIP63 und SnRK1α1 induziert werden. Durch Mutationskartierung und Chromatin-Immunopr{\"a}zipitation (ChIP)PCR konnte mehrfach eine direkte Bindung von bZIP63 an den cyPPDK-Promotor nachgewiesen werden. Zusammenfassend ergibt sich ein mechanistisches Arbeitsmodell, in dem bZIP63 durch SnRK1 phosphoryliert wird und durch Bindung an regulatorische G-Box cis-Elemente im cyPPDK- Promotor dessen Transkription anschaltet. Infolgedessen werden Aminos{\"a}uren abgebaut und wird {\"u}ber die Glukoneogenese Glukose aufgebaut. Dieser Mechanismus ist essentiell f{\"u}r die {\"U}bergangsphase zwischen heterotropher und autotropher Lebensweise, und tr{\"a}gt dazu bei, die im Samen vorhandenen Ressourcen dem Keimling zum idealen Zeitpunkt zug{\"a}nglich zu machen. Dar{\"u}ber hinaus werden Gene im Abbau von verzweigtkettigen Aminos{\"a}uren ebenfalls durch bZIP63 reguliert. Dabei wird dem Keimling Energie in Form von Adenosin-Triphosphat (ATP) zur Verf{\"u}gung gestellt. Zusammengefasst zeigen die Ergebnisse dieser Arbeit, dass die Mobilisierung von Speicherstoffen auch w{\"a}hrend der Keimlingsentwicklung direkt von SnRK1 abh{\"a}ngig ist. Die umfangreichen Datens{\"a}tze der RNA-Seq-Analysen bieten zudem die M{\"o}glichkeit, weitere SnRK1-abh{\"a}ngige Gene der Speichermobilisierung zu identifizieren und somit einem besseren Verst{\"a}ndnis der Keimlingsentwicklung beizutragen. Aufgrund der zentralen Bedeutung der SnRK1-Kinase in diesem entscheidenden Entwicklungsschritt ist davon auszugehen, dass diese Erkenntnisse mittelfristig auch f{\"u}r bessere Keimungsraten und somit bessere Ertr{\"a}ge in der Landwirtschaft genutzt werden k{\"o}nnen.}, subject = {SnRK1}, language = {de} }